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Hn(M) = Hn(N) = Z for the homology groups. Any continuous f : M → N

induces a map Hn(f ) : Hn(M)→ Hn(N), which is a group homomorphism, and
so of the form k→ Dk for some D ∈ Z, called the degree, deg(f ), of f .

Now let f be a C∞ map. A point m ∈ M is called a regular point if dfm, the
derivative of f at m, is nonsingular. A point n ∈ N is called a regular value if each
point in f −1(n) is a regular point. In particular, if f −1(n) is empty, n is regular.
By compactness and the inverse function theorem, each regular value has f −1(n),
a finite set. Sard’s theorem asserts the set of regular values is the complement of a
set of measure zero.

If m is a regular value, the signature of f at m, Sm(f ), is the sign of det(f ). (In
general, this requires one to pick orientations onM and N as does determining the
sign of deg(f ); if M = N , making the two orientations the same fixes signs.) The
fundamental theorem of degree theory says that for any regular value, n,∑

m∈f −1(n)

Sm(f ) = deg(f ) (5.12.75)

In particular, if f −1(n) is empty, deg(f ) = 0, and then regular points with
f −1(n) �= ∅ must have an even number of points to get the sum of ±1 to be 0.
So if f is one-one, the degree is ±1, and so f is onto, as claimed.

In the case studied in this section for f meromorphic on S, f maps S to SR,
the Riemann sphere, and the topological degree is the degree as we have defined
it. Analytic functions, f , where nonsingular, are conformal and so have signature
+1 and (5.12.75) and (5.12.20) agree at points, a, for which n(f ; z, a) = 0 or 1
for all z.

For expositions of degree theory for smooth maps, see Fonseca–Gangbo [137],
Guillemin–Pollack [189], Krawcewicz–Wu [247], Lloyd [283], Milnor [305], and
Spivak [416].

5.13 MINIMAL HERGLOTZ FUNCTIONS AND ISOSPECTRAL TORI

In Section 5.2, we saw the m-function, m(z), for a periodic Jacobi matrix, J , with
essential spectrum an �-gap set, e, has a meromorphic continuation to Se. From the
point of view of the last section, we will see m has some simple properties. And it
will turn out that the study of all J ’s that lead to a fixed e is related to the study of
functions with these properties.

Theorem 5.13.1. m is a meromorphic function on Se with the following properties:
(i) m is Herglotz in the sense that if Im z > 0,

Imm(z+) > 0 (5.13.1)

that is, Imm > 0 on S+ ∩ C+.
(ii) On S+ near ∞+,

m(z) = −1

z
+O

(
1

z2

)
(5.13.2)
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(iii) m has degree �+ 1.
(iv) m has one zero and one pole on each set {Gj }�j=1 and, moreover, a zero at∞+

and a pole at ∞−.

Proof. (i) and (ii) hold for any m-function; see Example 2.3.1 and (2.3.10).
By Theorem 5.2.1, m(z) obeys the quadratic equation

α(z)m(z)2 + β(z)m(z)+ γ (z) = 0 (5.13.3)

where

α(z) = appp−1(z) (5.13.4)

and the discriminant is �(z)2 − 4. Thus,

m(z) = −β(z)±
√
�2(z)− 4

2α(z)
(5.13.5)

m(z) clearly has a meromorphic continuation to all of S since
√
�2 − 4 has

branch points precisely at the edges of open gaps (the double zeros of �2 − 4 at
closed gaps are not branch points) with the only possible poles at ∞± and at the
zeros of pp−1(x).

These zeros are analyzed in Theorem 5.4.16: one occurs in each gap. If the gap is
closed,�2−4 has a double zero, and since that means β2−αγ = 0 and α = 0, we
have β = 0. So, in (5.13.5), α has a simple zero and the numerator is also zero. So
(as also remarked in Proposition 5.10.2), m has neither zero nor pole at the closed
gaps.

If a gap is not closed and the zero is at the interior point of the gap, z0, then α(z)
has a simple zero at z0. Since �(z0) �= ±2, β2 − αγ �= 0, so β(z0) �= 0. Thus,

−β(z)±
√
β2(z)− α(z)γ (z)

vanishes at one of (z0)± and is nonzero (indeed, −2β(z0)) at the other point. So m
has a single pole on one sheet or the other, but not both.

If the pole is at a resonance, that is, at an edge, z0, of a closed gap, �2 − 4
has a simple zero at z0 and β(z0)

2 = α(z0)γ (z0) + (�2(z0) − 4) = 0. Thus,
β(z0) = c(z− z0)+O((z− z0)

2) while
√
�2 − 4 = c(z− z0)

1/2 +O((z− z0)
3/2)

andm(z) = c(z−z0)
−1/2+O(1), so by the way poles are counted at branch points,

m has a simple pole at z0. We have thus proven m(z) has exactly one pole in each
Gj , j = 1, . . . , �.

By coefficient stripping (see (3.2.28)),

m(z)−1 = b1 − z − a2
1m1(z) (5.13.6)

Sincem1 is also them-function of a periodic Jacobi matrix,m1 has one pole in each
gap, and so m has exactly one zero in each two-sheeted gap.

Besides zeros of α, the only other possible poles of m(z) are at ∞±. At ∞+, m
is zero by (5.13.2). Thus, since α(z) ∼ c1z

p−1, β(z) ∼ c2z
p, and �2(z) ∼ z2p,

we must have β(z) cancelling the zp growth of
√
�2 − 4 at ∞+. That means at

∞−, the numerator is −2c2z
p +O(zp−1) and so, m(z) has a simple pole at ∞−.

We have thus proven m has exactly � + 1 simple poles, so m has degree � + 1.
Since we have accounted for �+ 1 zeros of m, we have them all.
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This leads to a natural definition in the context of general finite gap sets, not just
those that are periodic spectra.

Definition. Let e be a finite gap subset of R and let Se be the associated Riemann
surface. A minimal Herglotz function on Se is a meromorphic function m on Se
obeying:

(i) m is Herglotz in the sense that (5.13.1) holds for z ∈ S+ ∩C+ and Imm(x+ +
i0) has compact support.

(ii) m obeys (5.13.2) (so m is a discrete m-function in the sense of Section 2.3).
(iii) deg(m) = �+ 1.
(iv) m has a pole at ∞−.

Remark. The word minimal is used because m has minimal degree among non-
square root-free functions.

The set of all minimal Herglotz functions on Se will be denoted by Me. We
will show first that Me is a torus of dimension �; indeed, naturally associated
to the torus Te of (5.12.57). We will then study the Jacobi matrix associated to
an m in Me and prove, for general e, it is almost periodic, and if e comes from
one periodic Jacobi matrix, then all the minimal Herglotz functions associated to e
have associated periodic Jacobi matrices and have the same �. This will provide
the promised proof that the set of periodic J ’s with a given � is a torus.

Here is the general structure of minimal Herglotz functions:

Theorem 5.13.2. Every minimal Herglotz function, m, inMe has the form

m(z) = p(z)±√R(z)
a(z)

(5.13.7)

where
Deg(a) = � (5.13.8)

Deg(p) = �+ 1 (5.13.9)

and −p is monic. Moreover,
(i) p and a are real polynomials.

(ii) a has one simple zero in each gap.
(iii) m has exactly one simple pole in each gap plus the pole at ∞−.
(iv) m has exactly one simple zero in each gap plus the zero at ∞+.

Remarks. 1. A polynomial is called real if all its coefficients are real.
2. In the periodic case with closed gaps, a is not the 2α of (5.13.5) but it has

zeros at closed gaps that occur in the numerator removed. In addition, even if all
gaps are open and �2 − 4 has simple zeros, it is not R, but rather (a1 . . . ap)

−2R.

Proof. As a rational function on S, m has the form

m(z) = p(z)± q(z)√R(z)
a(z)

(5.13.10)

By (5.12.23) and deg(m) = �+ 1, we see deg(q) = 0, so we can take q = 1. Also
by (5.12.23), deg(a) ≤ �+ 1. Since (5.13.2) holds, and on S+,

+√R(z) = z�+1 +O(z�) (5.13.11)
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near ∞+, we must have that

p(z) = −z�+1 +O(z�) (5.13.12)

(since deg(a) ≤ � + 1 means the z�+1 term in the numerator must cancel). Thus,
−p is monic and (5.13.9) holds.

Since −√R(z) (i.e.,
√
R(z) on S−) has the opposite sign, near ∞−,

p(z)±√R(z) = −2z�+1 (5.13.13)

so to have a pole at ∞−, we must have

Deg(a) ≤ � (5.13.14)

Since m(z) is real on (β�+1,∞) and
√
R(z) is real there, p(z)/a(z) is real there.

So, by analyticity, all its zeros and poles come in conjugate pairs or lie on R. Since
−p is monic, we see p and then a is real.

On each band, p/a is real, so

Imm(x+ + i0) = Im
√
R(x+ + i0)
a(x + i0) (5.13.15)

Since
√
R(x) changes sign from one band to the next, a must change sign to keep

Imm(x+ + i0) ≥ 0. Thus, a has an odd number of zeros in each gap.
Since there are � gaps and, by (5.13.14), at most � zeros, we conclude each gap

has precisely one zero and (5.13.8) holds.
As in the analysis in the proof of Theorem 5.13.1, if a has a zero at a point, z0,

in the interior of a gap where R(z0) �= 0, m must have a pole at either (z0)+ or
(z0)− (or both), and if a has a zero at a band edge, z0, p(z) ± √R(z) vanishes at
(z − z0)

1/2 or approaches a constant. Thus, in that case also, m has a pole at z0.
Thus, m has at least one pole in each gap, and so since ∞− is a pole and there are
only �+ 1 poles, we see each gap has exactly one simple pole.

Define m1 by (5.13.6) where b1, a1 are picked so m1(z) obeys (5.13.2). By co-
efficient stripping, m1 is a Herglotz function and clearly, m1 is meromorphic on S.
m1 has a pole at each finite zero of m and, by deg(m) = � + 1 and the fact that
∞− is not a zero, and by (5.13.2), ∞+ is a simple zero, we know m has an � finite
zeros. Thus,m1 has � poles in S \{∞±}. At∞+,m1 has a zero and, by (5.13.6) and
m(z)−1 → 0 at ∞−, we see m1 has a simple pole at ∞−. Thus, deg(m1) = � + 1
and ∞− is a pole, so m1 is also inMe.

By the analysis above,m1 has exactly one simple pole in each gap so, by (5.13.6),
m(z) has exactly one simple zero in each gap.

Along the way, we have also proven:

Corollary 5.13.3. Ifm ∈Me, the coefficient strippedm1 defined by (5.13.16) also
lies inMe.

Remark. The proof of this corollary did not use that m had a pole at ∞−, only that
m did not have a zero at ∞−.
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Example 5.13.4. This example shows that property (iv) in the definition of minimal
Herglotz functions is not automatic. Let J be a periodic Jacobi matrix, and for
y ∈ R, let Jy be the matrix where only b1 is changed from b1 to b1 + y. Let my(z)
be the associated m-function. By (5.13.6) and the fact that Jy and J once-stripped
are the same, we see

my(z)
−1 = y +m(z)−1 (5.13.16)

Thus, my is also a meromorphic function of degree � + 1 and so obeys (i)–(iii) of
the definition ofMe. But, by (5.13.16),

my(∞−) = y−1 (5.13.17)

so my fails to obey condition (iv) of the definition.
my still has a pole in each gap, but instead of a pole at∞−, there is one additional

pole on (−∞, α1] ∪ [β�+1,∞) whose location and sheet depend on the sign and
magnitude of y. Also, now deg(a) = �+ 1 rather than deg(a) = �.

Changing a1 from the periodic value changes the degree of m.

There is a natural map, D, from Me to Te, the torus described in (5.12.57).
Namely, each f ∈Me has � poles other than at ∞−, one each in G1,G2, . . . ,G�.
The set of these poles describes a point (z1, . . . , z�) ∈ Te. This is called the
Dirichlet data for f . D is called the Dirichlet map. The reason for this name will
be explained in the Notes.

Theorem 5.13.5. D is a one-one continuous map of Me onto Te. In particular,
Me is topologically a torus.

Remark. HereMe is topologized using the topology of uniform convergence (uni-
form as SR-valued functions).

Proof. We will describe a point in Te with coordinates

D(f ) = (z1, δ1; z2, δ2; . . . ) (5.13.18)

where zj ∈ [βj , αj+1] and δj is ±1, with the convention that we take δj = −1 if zj
is at a band edge.

Any f ∈Me has the form

f (z) =
∫
e

g(x) dx

x − z +
∑

{j |δj=1}

wj

x − zj (5.13.19)

where

g(x) = 1

π
Im f (x+ + i0) (5.13.20)

wj = lim
ε↓0
(iε)f ((xj )+ + iε) (5.13.21)

This is just (2.3.7), (2.3.41), (2.3.54), and (2.3.58) where only the poles on S+
are relevant, since the measure is limε↓0

1
π

Im f (x++ iε) dx. Poles at branch points



PERIODIC OPRL 365

do not enter the sum because they only have |x − zj |−1/2 singularities. (They will
affect g; at nonresonant gap edges, g vanishes as (x − z0)

1/2, while at resonance
edges, g diverges as (x − z0)

−1/2.)
We know f has the form

f (z) = p(z)+√R(z)
a(z)

(5.13.22)

a has zeros at precisely the points {zj }�j=1, so

a(z) = A
�∏
j=1

(z − zj ) (5.13.23)

Since all zj < α�+1 and Im(
√
R(x+ + i0)) > 0 on [α�+1, β�+1] (from√

R(x+ + i0) > 0 on (β�+1,∞) and the branch of (z − β�+1)
1/2, which is pos-

itive on (β�+1,∞)+ i0 has positive imaginary part on (−∞, β�+1)+ i0), we have
A > 0.

Thus, by (5.13.20), in (5.13.19) for x ∈ e,

g(x) = 1

π

√|R(x)|
A
∏�
j=1|x − zj |

(5.13.24)

while, by (5.13.21),

wj = 2
√|R(zj )|

A
∏
k �=j |zk − zj |

(5.13.25)

for to avoid a pole on S−, we must have p(zj )−
√
R(zj ) = 0, which yields to 2 in

the numerator.
The normalization condition f (z) = −z−1 +O(z−2) is equivalent to∫

e

g(x) dx +
∑

{j |δj=1}
wj = 1 (5.13.26)

which determines A. Thus, knowing D(f ) determines A and then g and wj , and
then f , which proves the map is one-one.

Conversely, given a set of Dirichlet data (i.e., a point in Te), define a(z) by
(5.13.23) where A is determined by (5.13.26), determine p(z) by (since (p(z) +√
R(z))/a(z) is O(z−1))

p(z)+√R(z) = O(z�−1) (5.13.27)

near ∞+ (which determines the top two coefficients of p(z)) and the conditions
(since m has no pole at (zj ; δj ))

p(zj )∓ δj
√
R(zj ) = 0 (5.13.28)

This defines f by (5.12.7). Tracking signs of a proves Im f (x+ + i0) ≥ 0 on e
and that the residues of poles on S+ are positive. Thus, the Cauchy integral formula
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proves in C+ ∩ S+
f (z) =

∫
�+

f (w)

w − z dw (5.13.29)

and then (5.13.19), which shows Im f > 0 on S+ ∩ C+.
In (5.13.29), �+ is the contour in the proof of Theorem 5.12.3 and the fact that

constructed f has O(|z|−1) at ∞+ means the contour at ∞+ in the full Cauchy
integral formula vanishes. This proves existence.

Each f ∈Me is anm-function, so them-function of a unique Jacobi matrix, Jf ,
which is determined either from the spectral measure g(x) dx +∑{j |δj=1}wjδzj or
from the continued fraction expansion at ∞+. The topology onMe is equivalent
to the topology of pointwise convergence on the parameters in Jf (once we prove
Jf is periodic or almost periodic, this will be the same as uniform convergence in
n). Note that f determines a1, b1 directly by

f (z)−1 = −z + b1 + a2
1z
−1 +O(z−2) (5.13.30)

at ∞+.
We will study the n-dependence of the Jacobi parameters by studying the impact

of coefficient stripping. We proved in Corollary 5.13.3 that f → f1, coefficient
stripping given by (5.13.30) and (5.13.6) is a map ofMe toMe. We will also need
a map of

Ã :Me→ T�
the canonical �-torus, R�/Z�, by mapping Te to T� by Corollary 5.12.11, and com-
posing this with D, that is, if

D(f ) = (z1, . . . , z�) (zj ∈ Gj)
then

Ã(f ) =
�∑
j=1

A(zj )− A(z(0)j ) (5.13.31)

where z(0)j is some convenient point, say z(0)j = αj .
We can prove uniform (over the isospectral torus) bounds on the weight.

Theorem 5.13.6. There are positive constants C,D so that uniformly over Te, one
has for all x ∈ e,

DR(x)1/2 ≤ g(x) ≤ CR(x)−1/2 (5.13.32)

Proof. We have

dist(x,R \ e) min
j=1,...,�+1

( 1
2 |βj − αj |)�−1 ≤

�∏
j=1

|x − zj | ≤ |β�+2 − α1|� (5.13.33)

so, by (5.13.24), for some C1,D1,

D1A
−1R(x)1/2 ≤ g(x) ≤ C1A

−1R(x)−1/2 (5.13.34)
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Also, we have, by (5.13.25),

0 ≤ wj ≤ A−1C2 (5.13.35)

where

C2 = 2|β�+1 − α1|�+1(min|βj − αj |)−�+1 (5.13.36)

(5.13.26) and these bounds provide uniform (in Te) upper and strictly positive
lower bounds on A and then (5.13.34) implies (5.13.32).

Theorem 5.13.7. (a) Ã is a bijection ofMe to T�.
(b) Coefficient stripping f → f1 obeys

Ã(f1)− Ã(f ) = A(∞−)− A(∞) (5.13.37)

Proof. (a) Ã is the composition of D and the map of Corollary 5.12.11, each of
which is a continuous bijection.

(b) f has poles at the points in D(f ) plus at ∞− and, by (5.13.6) (other than at
∞±), zeros of f are precisely poles of f1 plus the zeros at ∞+. Thus, by the first
half of Abel’s theorem (Theorem 5.12.7),

Ã(f )+ A(∞−) = Ã(f1)+ A(∞+)

which is (5.13.37).

This is truly a remarkable theorem: f → f1 is a map of a torus to itself. In
general, iterating maps on a torus is complicated, but if the map is just addition
by a fixed group element, iteration n times is just adding n times that element!
x → x + nx0 is an affine map (on R�), so (5.13.37) is sometimes summarized by
the phrase: “Abel’s map linearizes coefficient stripping.” With this in place, we get
some immediate consequences (they are corollaries, but so significant that we call
them theorems!):

Theorem 5.13.8. Let e ⊂ R be a finite gap set. Let p ∈ {1, 2, . . . }. The following
are equivalent:

(i) One Jacobi matrix, Jf , associated to one f ∈Me is periodic of period p.
(ii) All Jacobi matrices, Jf , associated to all f ∈Me are of period p.

(iii) Each harmonic measure, ρe(ej ) (where ej = [αj , βj ]) is rational with

pρe(ej ) ∈ Z (5.13.38)

(iv) There is a polynomial of degree p with

�−1([−2, 2]) = e (5.13.39)

(inverse as a map from C).

Proof. Consider the statement

p(A(∞−)− A(∞+)) = 0 (5.13.40)

that is, p times the element of the torus is the identity. By (5.13.37), if f1, f2, . . .

are what we get by coefficient stripping, (5.13.40) is equivalent to

Ã(fp)− Ã(f ) = 0 (5.13.41)
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for one f or for all f ! Since Ã is a bijection, this is equivalent to fp = f , that is,
J is itself after stripping p times, that is, J is periodic!

By (5.12.71), (5.13.40) holds if and only if

p

k∑
j=1

ρe(ej ) ∈ Z

for k = 1, 2, . . . , �, which is equivalent to (5.13.38).
Finally, we note that (i) ⇒ (iv); just take � to be the discriminant. Conversely,

(iv) implies (5.13.40). For let

F(z) = −�(z)±
√
�2(z)− 4

Since �−1([−2, 2]) = e, �2 − 4 has double roots at internal points of e and single
roots at edges of e, so F is meromorphic on Se. Since

±
√
�2 − 4 = ±(�(z)+O(�(z)−1)) (5.13.42)

we see at ∞+, F has a zero of order p and at ∞− a pole of order p. It thus has
degree p (since there are no other poles) and so no other zeros (as can also be seen
by noting that F(z)−1 = 1

4 (−�(z) ∓
√
�2 − 4)). Thus, (5.13.40) is just the first

part of Abel’s theorem for F .

Notice that Theorem 5.13.8 implies Theorem 5.5.25 (given Proposition 5.5.26)
and provides a proof of that theorem. Our proof of Aptekarev’s theorem (i.e.,
(ii) ⇒ (iii) in Theorem 5.5.25) is indirect: Rational harmonic measure implies
(5.13.40) by the calculation in (5.12.71) and that implies there is a periodic J
and then � is its discriminant. Peherstorfer’s proof [338] is via a direct con-
struction—its OPUC analog appears as Theorem 11.4.8 in [400].

The following generalizes the Borg–Hochstadt theorem (Theorem 5.4.21):

Corollary 5.13.9. Let {an, bn}∞n=1 be a set of Jacobi parameters obeying

an+p = an bn+p = bn (5.13.43)

where p = kq with k and q integral. Suppose all the gaps Gj are closed for
j �= k, 2k, . . . , (q − 1)k. Then, a, b are periodic at period q, that is,

an+q = an bn+q = bn (5.13.44)

Remark. The Borg–Hochstadt theorem is the case q = 1.

Proof. Each band has harmonic measure m/q.

For general finite gap sets, the Jacobi matrices are quasiperiodic:

Theorem 5.13.10. Let e be a finite gap set and Jf a Jacobi matrix whose m-
function is a minimal Herglotz function in Me. Then its Jacobi parameters are
almost periodic. To be totally explicit, there are real analytic functions Ae and Be
on T�, the standard � torus with values in (0,∞) and R, respectively, so that for
every such Jf , we have t0 ∈ T� so that

an = Ae(t0 − nω) bn = Be(t0 − nω) (5.13.45)

where ω is given in terms of the harmonic measures of e by (5.12.71).
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Proof. Define Ãe and B̃e onMe by

f (z)−1 = −z + B̃e(f )+ Ãe(f )2z−1 +O(z−2) (5.13.46)

which are clearly real analytic onMe. Define

Ae = Ãe ◦ Ã−1 Be = B̃e ◦ Ã−1

where Ã is the bijection of Me to T� of Theorem 5.13.7. Then (5.13.45) is just
(5.13.37) iterated.

One can naturally use (5.13.45) to define (an, bn) for all n ∈ Z and so get natural
two-sided Jacobi matrices for any e. The set of such two-sided matrices is called the
isospectral torus, Te, for e. In the periodic case, it is precisely the set of periodic J ’s
with a given�. Just as Chapter 3 is the theory of special classes of perturbations of
Te for e = [−2, 2], we want to understand the analogous perturbations for general
e. For the rational harmonic measure case, this will be the subject of Chapter 8 and
for general e’s, of Chapter 9.

Finally, we use these ideas to find another proof of (5.2.11) and show that for the
general finite gap situation, the whole-line Jacobi matrices are reflectionless (i.e.,
have purely imaginary Green’s functions).

Theorem 5.13.11. Let e be a finite gap set, m a minimal Herglotz function on Se,
and J the two-sided Jacobi matrix given by (5.13.45) for n ∈ Z, so that

m(z) = m(z; J+0 ) (5.13.47)

Then

m(z; J−0 ) = (a2
0m(τ(z)))

−1 (5.13.48)

that is, one can recover m(z; J−1
0 ) from the second sheet values of m.

Remark. In the periodic case, this provides another proof of (5.2.11).

Proof. By the fact thatm(z) has a pole at∞− and by (5.13.7), we see thatm1(z)−
(−a−2

1 z + a−2
1 b1) has a zero at ∞−, so near ∞−,

m1(z) = −a−2
1 z + a−2

1 b1 +O(z−1) (5.13.49)

In particular, near ∞− on C+ ∩ S+, Imm1(τ (z)) ≤ 0. On the other hand, on e,
m1(τ (x + i0)) = m(x + i0) also has a negative imaginary part. Finally, the same
argument that showed poles on S+ have positive residues shows they have negative
residues on S− (for on S−, p(z) + √

R(z) = 0 and −2
√
R(z)/a(z) has positive

sign). Thus, by the maximum principle for harmonic functions, Imm1(τ (z)) ≤ 0
on S+ ∩ C+.

It follows that (a2
1m1(τ (z)))

−1 is a discrete m-function. Similarly, if we let

m+,n(z) = m(z; J+n ) (5.13.50)

then

m−,n(z) ≡ (a2
nm+,n(τ (z))

−1 (5.13.51)

is a discrete m-function.
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With this definition, the recursion relation

m+,n(z)−1 = bn+1 − z − a2
n+1m+,n+1(z) (5.13.52)

which initially holds on S+∩C+ extends by analytic continuation, and since τ(z) =
z implies

a2
nm−,n(z) = bn+1 − z − (m−,n+1(z))

−1 (5.13.53)

which shows inductively that the Jacobi parameters associated tom−,n are {aj−2+n,
bj−1+n}∞j=1, that is, J−n . Thus,

m−,n(z) = m(z; J−n ) (5.13.54)

which for n = 0 is (5.13.48).

Theorem 5.13.12. Let J be a two-sided Jacobi matrix in Te where e is a finite gap
set. Then,

(i) The diagonal Green’s function,Gnn(z), is pure imaginary for z = x + i0 with
x ∈ e. Thus, J is reflectionless on e.

(ii) σ(J ) = e and the spectrum is purely absolutely continuous of uniform multi-
plicity 2.

Proof. (i) By (5.4.45),

Gnn(z) = − 1

a2
nm(z; J+n )−m(z; J−n )−1

(5.13.55)

On e,

m(x + i0, J−n ) = m(τ(x − i0), J−n )
= m(x + i0, J−n ) (5.13.56)

so, by translates of (5.13.48),

m(x + i0, J−n )−1 = a2
nm(x + i0, Jn) (5.13.57)

and, by (5.13.55), Gnn is pure imaginary.
(ii) By (5.13.55) and (5.13.48),

(−Gnn(z))−1 = a2
n[m(z; J+n )−m(τ(z); J+n )] (5.13.58)

for all z ∈ C \ e.
Consider a gap [βj , αj+1]. Writing m in the form (p ±√R)/a, we see

(−Gnn(z))−1 = 2a2
n

√
R(z)

a(z)

where a(z) has a single zero in [βj , αj+1].
Suppose first that zero is in (βj , αj+1). Then (−Gnn(z))−1 vanishes at βj and

αj+1. Moreover, on R \ σ(J ),
d

dx
Gnn(x) > 0 ⇒ d

dx
(−Gnn(x))−1 > 0
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away from the zero of a. Thus, by monotonicity, (−Gnn(z))−1 has no zero in
(βj , αj+1).

If (a(z)) has a zero at βj , then (−Gnn(βj ))−1 = ∞, (−Gnn(αj+1)) = 0, and
(−G)−1 is finite and monotone in all of (βj , αj+1), so always strictly negative.
Similarly, if a(z) has a zero at αj , (−Gnn(z))−1 is strictly positive on (βj , αj+1).

In all cases, (−Gnn(z))−1 is nonvanishing on (βj , αj+1), so noGnn(z) has a pole
in those intervals, so σ(J ) ⊂ e. By the fact that Gnn(x + i0) is pure imaginary,
Craig’s theorem (Theorem 5.4.19) implies the spectrum is purely a.c. Since

Im(a2
nm(x + i0, J+n )) = Im((−m(x + i0, J−n ))−1) = 1

2 Im((−Gnn(x + i0))−1)

we see that the a.c. spectrum is of multiplicity 2.

Remarks and Historical Notes. This is the second half of the theory developed
by Flaschka–McLaughlin–Krichever–van Moerbeke quoted (with background) in
the Notes to the last section.

By the discussion in Example 5.13.4 and the remark after Corollary 5.13.3, if m
obeys all the conditions for a function inMe, except it is finite and nonzero at ∞−
rather than a pole, then the once-strippedm1 is inMe. So every such Jacobi matrix
is an almost periodic one with b1 modified.

In the periodic case, the Dirichlet data points are the roots of pp−1(z), which are
eigenvalues of the truncated matrix Jp−1;F , so associated to solutions of
(J − λ)u = 0 with un=0 = un=p = 0, thus Dirichlet eigenvalues, which is the
reason for the name. Alternatively, in terms of the operators J±0 of the truncated
full-line problem, Dirichlet data in the interior of a gap are eigenvalues of J+0
if in S+ and of J−0 if in S−.

There are basically two ways of thinking of the isospectral torus, Te: a set of
whole-line Jacobi matrices or as their restrictions to the half-line (which, by almost
periodicity, determine the whole-line matrix). The half-line objects are defined as
the set of minimal Herglotz functions. The whole-line objects are the set of reflec-
tionless whole-line J ’s with σess(J ) = �ac(J ) = e. That every such object lies in
the isospectral torus, as we have defined it, will be the major theme in Section 7.5,
which will also discuss the history of this point of view.

Among all almost periodic Jacobi matrices, the finite gap ones are unusual in
that, generically, one expects infinitely many gaps and Cantor spectrum. For results
on such generic Cantor spectrum, see [28, 29, 121, 172].

APPENDIX TO SECTION 5.13:

A CHILD’S GARDEN OF ALMOST PERIODIC FUNCTIONS

As we have seen, Jacobi parameters induced by the minimal Herglotz functions as-
sociated to a general finite gap set are quasiperiodic, and so almost periodic. In this
appendix, we discuss the general definition of quasiperiodic and almost periodic.

Given a function, f , on Z and n ∈ Z, we define fn on Z by

fn(m) = f (n+m) (5.13A.1)


