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case but never published it. The discrete (i.e., difference equation) result goes back
at least to Bôcher [130]. See Simon [980] for further discussion.

1.3. Carathéodory and Schur Functions

An analytic function, F , on D is called a Carathéodory function if and only if
F (0) = 1 and ReF (z) > 0 on D. An analytic function, f , on D is called a Schur
function if and only if supz∈D|f(z)| ≤ 1. The association

F (z) =
1 + zf(z)
1 − zf(z)

(1.3.1)

f(z) =
1
z

F (z) − 1
F (z) + 1

(1.3.2)

sets up a one-one correspondence between the two types of functions. These classes
play a major role in OPUC, so we include here a sketch of the high points of their
theory and their relation to measures on ∂D.

We call F trivial if it is a rational function whose poles all lie on ∂D and which
is pure imaginary at any regular point on ∂D. We call f trivial if it is a finite
Blaschke product

f(z) = eiθ
m∏

j=1

z − zj

1 − z̄jz
(1.3.3)

for z1, . . . , zm ∈ D. f(z) ≡ w0, a constant, is considered a finite Blaschke product
(so, trivial) if |w0| = 1 and nontrivial if |w0| < 1. It is easy to see that F is trivial
if and only if the associated f is.

Some authors define a Schur function as an analytic map of D to D. The
difference with the definition we give is the functions f(z) = w0 ∈ ∂D, which
we will call degenerate Schur functions. Thus nondegenerate Schur functions are
precise analytic maps of D to D. Note that degenerate functions are also trivial.

That (1.3.1)/(1.3.2) set up a one-one correspondence between the two classes
follows if one notes that

ϕ(w) =
1 + w

1 − w
is a bijection of D to {z ∈ C | Re z > 0} with ϕ(0) = 1 and that the Schwarz lemma
asserts that g is a Schur function with g(0) = 0 if and only if g(z) = zf(z) for f a
Schur function.

Given (1.3.1) with |f | ≤ 1, we have the universal bound on Carathéodory
functions:

1 − |z|
1 + |z| ≤ |F (z)| ≤ 1 + |z|

1 − |z| (1.3.4)

A Laurent polynomial is an analytic function, g(z), on C\{0} (meromorphic
on C), which is a finite linear combination of zk with k ∈ Z, that is, positive or
negative. If g �≡ 0, there is a unique factorization

g(z) = z�R(z) (1.3.5)

with � ∈ Z and R a polynomial with R(0) �= 0. The degree of g is the degree of the
polynomial R. Thus, if g(z) =

∑m
k=� akzk with a� �= 0 �= am, deg(g) = m− �. With

these preliminaries in hand, we turn to the basic facts:
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1. Fejér-Riesz Theorem
This result says that any Laurent polynomial f which is nonnegative on ∂D

can be factored
f(eiθ) = |P (eiθ)|2 (1.3.6)

where P is a polynomial whose zeros all lie in D̄ (or if one prefers, one can find a
P whose zeros are all in C\D). By analyticity, one then has

f(z) = P (z)P (1/z̄) (1.3.7)

This result is proven by noting first that nonnegativity in ∂D implies any zero
f has on ∂D must be of even order. Since f is real on ∂D, we first have

f(z) = z−nQ(z) (1.3.8)

where deg(Q) = 2n, Q(0) �= 0, and then that

f(z) = f(1/z̄) (1.3.9)

since both sides are analytic in C\{0} and agree on ∂D. Thus zeros in C\∂D come
in z, 1/z̄ pairs of equal multiplicity. It follows from

z−1(z − z�)(z − z̄−1
� ) = −z̄−1

� (z − z�)(z−1 − z̄�)

that (1.3.6) holds where P is a constant times
∏n

�=1(z − z�) with {z�} the set of
zeros of Q in D union the zeros in ∂D with half their even multiplicity.

If we require that P have no zeros in D, then the above argument determines
P uniquely up to a multiplicative eiθ factor. If we demand P (0) > 0, that factor
is determined. Thus, we have the sharp form of the Fejér-Riesz theorem: If f
is a Laurent polynomial that is nonnegative on ∂D, then there exists a unique
polynomial P (z) with P (0) > 0 and P (z) �= 0 for z ∈ D so that (1.3.6) holds.
Below we will write an explicit formula for P (see (1.3.23)).
2. Toeplitz Matrices and the Carathéodory-Toeplitz Theorem

Given a sequence {cn}∞n=0 of complex numbers, when is there a nontrivial
measure dµ on ∂D so that

cn =
∫

e−inθ dµ(θ) (1.3.10)

Define cn for n < 0 by cn = c̄−n and form the n × n Toeplitz matrix

T
(n)
ij = cj−i 0 ≤ i, j ≤ n − 1 (1.3.11)

that is,

T (n) =

⎛⎜⎜⎝
c0 c1 . . . cn−1

c−1 c0 . . . cn−2

. . . . . . . . . . . .
c−n+1 . . . . . . c0

⎞⎟⎟⎠
We will also define for n = 0, 1, . . . (note the n + 1 on the right),

Dn(dµ) = det(T (n+1)) (1.3.12)

Note. There are two sign conventions in the last few formulae. Some define cn

with einθ and some use ci−j , not cj−i, in (1.3.11). Either change causes a transpose
in T (n), and using both (as, e.g., Szegő does in his 1920 papers [1018, 1019]) leaves
T (n) as we define it. The most common conventions use (1.3.10), but T

(n)
ij = ci−j .

In any event, the reader needs to be aware that our T (n) may be others’ (T (n))t
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(but that does not change det(T (n)) nor the set of real numbers
∑n

i,j=1 ᾱiαjT
(n)
ij ).

In addition, some use Dn = det(T (n)) and/or define T (n) to be (n + 1) × (n + 1)
rather than n × n.

Let P (eiθ) =
∑n−1

j=0 αje
ijθ. If L is the linear functional on Laurent polynomials

given by
L(z−n) = cn (1.3.13)

then

L(P (z)P (1/z̄) ) =
n−1∑
ij=0

T
(n)
ij ᾱjαi

It follows from the Fejér-Riesz theorem that L is strictly positive on all nonzero
Laurent polynomials which are nonnegative on ∂D if and only if each T (n) is strictly
positive definite. Since the Laurent polynomials are dense in C(∂D) by Weierstrass’
theorem, the Riesz-Markov theorem [896, p. 111] says there exists a nontrivial
measure dµ obeying (1.3.10) if and only if each T (n) is strictly positive. We thus
have the Carathéodory-Toeplitz theorem: cn are moments of a nontrivial measure
on ∂D if and only if Dn(c) > 0 for all n.
3. Poisson Representation

The real and complex Poisson kernel are defined by

Pr(θ, ϕ) =
1 − r2

1 + r2 − 2r cos(θ − ϕ)
(1.3.14)

for θ, ϕ ∈ [0, 2π) and r ∈ [0, 1) and by

C(z, w) =
w + z

w − z
(1.3.15)

for w ∈ ∂D, z ∈ D. The connection is

Pr(θ, ϕ) = Re C(eiθ, reiϕ) = Re
[
eiθ + reiϕ

eiθ − reiϕ

]
(1.3.16)

which shows that Pr(θ, ϕ) for θ fixed is a harmonic function of reiϕ.
The Poisson representation says that if g is analytic in a neighborhood of D̄

with g(0) real, then for z ∈ D,

g(z) =
∫ (

eiθ + z

eiθ − z

)
Re(g(eiθ))

dθ

2π
(1.3.17)

The easiest way to see this is to note first that

eiθ + z

eiθ − z
=

1 + ze−iθ

1 − ze−iθ
= 1 + 2

∞∑
n=1

zne−inθ (1.3.18)

uniformly convergent for eiθ ∈ ∂D and z running through compact subsets of D.
Secondly, if g(z) =

∑∞
n=0 anzn, then∫

e−inθ Re(g(eiθ))
dθ

2π
=

1
2

∫
e−inθ[g(eiθ) + g(eiθ) ]

dθ

2π

=

{
Re(a0) if n = 0
1
2an if n = 1, 2, . . .

(1.3.19)

proving (1.3.17) since a0 = g(0) is assumed real.
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An alternate proof uses the fact that Pr(θ, ϕ) is an approximate delta function
as r ↑ 1, so the real parts of the two sides of (1.3.17) are harmonic functions on D,
continuous on D̄, agreeing on ∂D, and so equal by the maximum principle. Thus
(1.3.17) holds up to an imaginary additive constant, which is zero since g(0) is real.

Taking real parts of (1.3.17), we obtain for any h analytic or harmonic in a
neighborhood of D:

h(reiθ) =
∫

Pr(θ, ϕ)h(eiϕ)
dϕ

2π
(1.3.20)

In particular, taking h(reiθ) = Pr(θ, ϕ), we obtain∫
|Pr(θ, ϕ)|2 dϕ

2π
= Pr(ϕ,ϕ) =

1 + r

1 − r
(1.3.21)

If g is an analytic function in a neighborhood of D̄ with g(0) = 1 and g nonva-
nishing on D̄, then applying (1.3.17) to log g, we find

g(z) = exp
(

1
2π

∫
eiθ + z

eiθ − z
log(|g(eiθ)|) dθ

)
(1.3.22)

This extends by a limiting argument to cases where g is only nonvanishing on D (but
still analytic in a neighborhood of D̄, although that can be weakened sometimes;
see Subsection 9 below). In particular, the polynomial, P, that solves (1.3.6) with
P (0) > 0 and P nonvanishing on D is given by

P (z) = exp
(

1
4π

∫
eiθ + z

eiθ − z
log(f(eiθ)) dθ

)
(1.3.23)

4. Herglotz Representation
Let F be a Carathéodory function. For 0 ≤ r < 1, let dµr(θ) be the measure

dµr(θ) = Re F (reiθ)
dθ

2π
(1.3.24)

Define the Taylor coefficients of F (z) at z = 0 by

F (z) = 1 + 2
∞∑

n=1

cnzn (1.3.25)

(the reason for the 2 will be clear momentarily; see (1.3.18) and (1.3.29)). Then

Re F (reiθ) = 1 +
∞∑

n=1

(cnrneinθ + c̄nrne−inθ) (1.3.26)

Define cn = c̄−n for n < 0 and c0 ≡ 1. Then for n = 0,±1,±2, . . . ,∫
e−inθdµr(θ) = cnr|n| (1.3.27)

and the Poisson representation for g(z) = F (rz) says

F (rz) =
∫

eiθ + z

eiθ − z
dµr(θ) (1.3.28)

Now take r ↑ 1. By (1.3.27),
∫

h(θ) dµr(θ) has a limit for any Laurent poly-
nomial h. Since such polynomials are dense in C(∂D) and |

∫
h(θ) dµr(θ)| ≤ ‖h‖∞,

the dµr’s converge weakly to a measure dµ with∫
e−inθ dµ(θ) = cn (1.3.29)
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Since C(z, eiθ) is continuous in θ for each z ∈ D, the weak convergence can
be applied to (1.3.28) to conclude the Herglotz representation theorem: Any
Carathéodory function has a representation

F (z) =
∫

eiθ + z

eiθ − z
dµ(θ) (1.3.30)

for a unique probability measure µ on ∂D. F has a Taylor series (1.3.25) at z = 0
where cn are the moments of dµ given by (1.3.29).

By combining this result and the Carathéodory-Toeplitz theorem, one ob-
tains a solution to Carathéodory’s problem: {2cj}n

j=1 are the Taylor coefficients
of a nontrivial Carathéodory function if and only if the Toeplitz determinants
D0(c), . . . , Dn(c) are strictly positive.

(1.3.30) suggests that F is the analog of (1.2.6) and, in many ways, it is (see
the next subsection and also Theorem 3.2.11), but there are other analogs of the
m-function for OPRL [978]:
(i) the relative Szegő function, δ0D (see Section 2.9)
(ii) the Schur function (see (1.1.15) and (1.2.57))
(iii) zf(z) (see (9.2.30))
(iv) the function m+(z) (see (10.11.5) and (10.11.7))
(v) the function, M(z), of Section 11.7 (see (11.7.76))

This is discussed further in Appendix B.2.
5. Boundary Values of the Carathéodory Function

There are four basic facts relating F to µ that we will need:
(i) 1

2π Re F (reiθ) dθ converges weakly to dµ. This is the basic construction above.
(ii) For Lebesgue a.e. θ, limr↑1 F (reiθ) ≡ F (eiθ) exists, and if dµ = w(θ) dθ

2π + dµs

with dµs singular, then
w(θ) = Re F (eiθ) (1.3.31)

Since e−F (z) is a bounded analytic function, general principles (see, e.g., Rudin
[924, p. 340]) imply it has a.e. boundary values which are nonvanishing.
(1.3.31) is also a general fact (see Rudin [924, p. 244]). By (1.3.1),

Re F (z) =
1 − |zf |2

|1 − zf(z)|2
and thus, using (1.3.2) to see that f also has a.e. boundary values on ∂D, we
see that

dµac(θ) =
1 − |f(eiθ)|2

|1 − eiθf(eiθ)|2
dθ

2π
(1.3.32)

In particular, the essential support of dµac is {θ | |f(eiθ)| < 1}.
(iii) θ0 is a pure point of dµ if and only if

µ({θ0}) = lim
r↑1

(
1 − r

2

)
[F (reiθ0)] (1.3.33)

is nonzero. This follows from the dominated convergence theorem, the estimate
(when |z| < 1) (1−|z|)|eiθ+z| |eiθ−z|−1 ≤ 2, and limr↑1(1−r)(eiθ+reiθ0)(eiθ−
reiθ0) = 0 if θ �= θ0, = 2 if θ = θ0.

(iv) dµs is supported on {θ | limr↑1 Re F (reiθ) = ∞}. This is also a standard fact
about measures; it follows, for example, from Rudin [924, p. 243]. We note
that just because this set is nonempty, one cannot conclude that dµs �= 0.
For example, if the set is countable but at points where |F (reiθ0)| → ∞, we
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have that (1 − r)|F (reiθ0)| → 0, then (iii) implies dµs is zero. We will see
generalizations of this idea in Section 10.8.
One consequence of (iv) is that if F is analytic in a neighborhood of D̄, equiv-

alently, by (1.3.25), if the cn decay exponentially, then dµs = 0.
See Lemma 3.2.15 for a discussion of boundary values of F when supp(dµ) has

a gap.
6. Schur Parameters and the Schur Algorithm

Nondegenerate Schur functions are maps of D onto D. Schur’s algorithm ex-
ploits two ways of mapping a (suitable) Schur function to another:
(i) Since, for γ ∈ D,

Tγ(w) =
w − γ

1 − γ̄w

is an invertible analytic homeomorphism of D to D which maps γ → 0, Tf(0)◦f
is a nondegenerate Schur function which vanishes at zero.

(ii) By the Schwarz lemma, if f is a Schur function and f(0) = 0, then either
z−1f(z) is a nondegenerate Schur function or else a constant in ∂D.
Combining the two, we see that if f0 is a nondegenerate Schur function and we

let

γ0 = f0(0) (1.3.34)

f1(z) =
1
z

f0(z) − γ0

1 − γ̄0f0(z)
(1.3.35)

then we have an algorithm for mapping one Schur function to another. By
iterating, we get a sequence of numbers γ0, γ1, . . . , γn, . . . and Schur functions
f = f0, f1, . . . , fn, . . . , called the Schur iterates of f . The only snag is if at some
stage, fn(z) = γn ∈ ∂D. In that case, we stop. If fn(z) ≡ γn ∈ D, we continue,
which means fn+1 = fn+2 = · · · = 0 and γn+1 = γn+2 = · · · = 0. Thus, any Schur
function, f , is associated to either an infinite sequence γ0, γ1, . . . in D or a finite
sequence γ0, . . . , γn−1, γn with γj ∈ D for j < n and γn ∈ ∂D. These numbers are
called the Schur parameters for f . It is not hard to see that the case γn ∈ ∂D holds
if and only if f is trivial, that is, a finite Blaschke product.

More formally, we can describe the association as follows: Let D∞,c be the set
of all sequences {αn}N

n=0 in D̄ which either have N = ∞ and all αn ∈ D or else have
N < ∞ with α0, . . . , αN−1 ∈ D and αN ∈ ∂D. D∞,c with the topology of pointwise
convergence is compact and has D∞ as a dense set. The Schur algorithm is a
map S from the set of Schur functions to D∞,c with finite sequences corresponding
to trivial Schur functions (finite Blaschke products). By (1.3.43) below, S is a
homeomorphism of the unit ball in H∞ to D∞,c. We will let S−1 be the inverse of
S.

One can invert the transformation fj → (γj , fj+1). Define

Sγ,z(w) =
γ + zw

1 + γ̄zw
(1.3.36)

Then
fj(z) = Sγj ,z(fj+1(z)) (1.3.37)

or
f(z) = Sγ0,z(Sγ1,z(. . . Sγj ,z(fj+1(z))) (1.3.38)
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In particular,

f(z) =
γ0 + zf1(z)
1 + γ̄0zf1(z)

(1.3.39)

This can also be written

f(z) = γ0 +
(1 − |γ0|2)zf1

1 + γ̄0zf1(z)
(1.3.40)

We define the Schur approximants, f [j](z), by replacing fj+1 in (1.3.38) by 0.
Thus, f [j](z) is that Schur function with

γ�(f [j]) =

{
γ�(f) � = 0, 1, . . . , j

0 � ≥ j + 1
(1.3.41)

Since Sγ,1 maps D to D and Sγ,z(w) = Sγ,1(wz), Sγ,z map D onto D if |z| < 1.
Thus, each f [j] is a Schur function.

In the next subsection, we will show that the n-th Taylor coefficients of a Schur
function f ,

f(z) =
∞∑

n=0

sn(f)zn (1.3.42)

only depend on γ0, . . . , γn. Thus, if f, g are Schur functions with γ�(f) = γ�(g) for
� = 0, . . . , n, we have that 1

2 (f −g) is a Schur function which vanishes to order n+1
and so, by the Schwarz lemma, |f(z) − g(z)| ≤ 2|z|n+1, that is,

γj(f) = γj(g) for j = 0, . . . , n ⇒ |f(z) − g(z)| ≤ 2|z|n+1 (1.3.43)

In particular,
|f(z) − f [n](z)| ≤ 2|z|n+1 (1.3.44)

and thus f [n] → f uniformly on compact subsets of D.
This also shows that if γ0, γ1, . . . is an arbitrary sequence in D and f [j] is defined

by (1.3.38) with fj+1(z) = 0, then

|f [j](z) − f [�](z)| ≤ 2|z|1+min(�,j) (1.3.45)

so f [j] is Cauchy in local uniform norm. Thus there is a Schur function, f , with
γ�(f) = γ�. Therefore, we have Schur’s criterion: The association f → {γj(f)}∞j=0

sets up a one-one correspondence between nontrivial Schur functions and ×∞
j=0 D.

7. Taylor Coefficients for Schur Functions
(1.3.39) implies that

(1 + γ̄0zf1)f = γ0 + zf1 (1.3.46)
Recall, (1.3.42), that sn(f) are the Taylor coefficients of f . Using s0(f) = γ0 and
identifying the powers of zn on both sides of (1.3.46) leads to

sn(f) = (1 − |γ0|2)sn−1(f1) − γ̄0

n−1∑
j=1

sj(f)sn−1−j(f1) (1.3.47)

if n ≥ 1. This formula plus induction in n implies Schur’s recurrence relation,

sn(f) =
n−1∏
j=0

(1 − |γj |2)γn + rn(γ0, γ̄0, γ1, γ̄1, . . . , γn−1, γ̄n−1) (1.3.48)

where rn is a polynomial in its arguments.
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This formula was used in the proof of (1.3.43), and the following consequence
of it, (1.3.50), will play an important role in Section 3.1.

Suppose now that µ is a measure, F its m-function (given by (1.3.30)), and f
is a Schur function (given by (1.3.2)). Since (1.3.1) says

F (z) = 1 + 2
∞∑

n=1

(zf)n (1.3.49)

and the Taylor coefficients of F are given by (1.3.25), we have identifying coefficients
of zn on both sides of (1.3.49):

cn = sn−1(f) + polynomial in (s0(f), . . . , sn−2(f))

Thus we have that the moments of µ and the Schur coefficients of the associated
Schur functions are related by (for n ≥ 1)

cn(f) =
n−2∏
j=0

(1 − |γj |2)γn−1 + r̃n−1(γ0, γ̄0, . . . , γn−2, γ̄n−2) (1.3.50)

where r̃n−1 is a polynomial. Note that up to shift of index, the first terms on the
right of (1.3.48) and (1.3.50) are the same, but the precise polynomials rn and r̃n

are different.
The explicit formulae quickly become very complicated. For example (and once

one has Geronimus’ theorem γn = αn),

c1 = γ0 (1.3.51)

c2 = γ2
0 + γ1(1 − |γ0|2) (1.3.52)

c3 = (γ0 − γ1γ̄0)[γ2
0 + γ1(1 − |γ0|2)] + γ1γ0 + γ2(1 − |γ0|2)(1 − |γ1|2) (1.3.53)

Later, we will have a compact formula (1.5.80) for γn as a ratio of determinants
built from the c’s.

(1.3.46) has an interesting consequence. It can be rewritten

f − γ0 − zf1 = −γ̄0zf1f (1.3.54)

which implies that
|f − γ0 − zf1| ≤ |γ0| |z| (1.3.55)

Thus, by induction,∣∣∣∣f −
N∑

n=0

γnzn − zN+1fN+1

∣∣∣∣ ≤ N∑
n=0

|γn| |z|n+1 (1.3.56)

which implies that

|f(z)| ≤ 2
N∑

n=0

|γn| |z|n + |z|N+1 (1.3.57)

and thus, taking N → ∞,

|f(z)| ≤ 2
∞∑

n=0

|γn| |z|n (1.3.58)

An interesting application of this is to note that if
∑∞

n=0|γn| < 1
2 , then

supz∈D|f(z)| < 1, which implies that the associated Carathéodory function, F,
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is bounded on D and so the measure associated to F is purely absolutely continu-
ous. Given Geronimus’ theorem, this is only a few steps short of the easy half of
Baxter’s theorem.
8. Wall Polynomials

The Schur approximants are, by construction, rational functions. Indeed, since
f

[j]
j+1 = 0, by induction and (1.3.36)/(1.3.37), f

[j]
j+1−k(z) is a ratio of polynomials of

degree k − 1. Thus, f [j](z) = f
[j]
0 is a ratio of polynomials of degree j.

Calculations with compositions of fractional linear transformations are done
most easily using matrix multiplication: In fancy language, fractional linear trans-
formations are projective automorphisms. More prosaically, if S(w) = (aw +
b)/(cw + d), then (

S(w)
1

)
=

1
c + dw

(
a b
c d

)(
w

1

)
Since the (c + dw)−1 factors commute with matrices, it is convenient to write

z =
aw + b

cw + d

by the shorthand

z
.= Aw A =

(
a b
c d

)
(1.3.59)

We clearly have
z

.= Aw and w
.= By ⇒ z

.= ABy (1.3.60)

and, in particular, if A is invertible,

z
.= Aw ⇔ w

.= A−1z (1.3.61)

Thus fj = (zfj+1 + γj)/(γ̄jzfj+1 + 1) and f = f0 becomes

f
.=
(

z γ0

γ̄0z 1

)(
z γ1

γ̄1z 1

)
· · ·

(
z γn

γ̄nz 1

)
fn+1

Defining the matrix product on the right to be
(

Cn An

Dn Bn

)
, we have the pair of pre-

liminary formulae: (
Cn An

Dn Bn

)
=

(
Cn−1 An−1

Dn−1 Bn−1

)(
z γn

γ̄nz 1

)
(1.3.62)

f =
An + Cnfn+1

Bn + Dnfn+1
(1.3.63)

with initial condition
(

C0 A0
D0 B0

)
=

( z γ0
γ̄0z 1

)
.

An and Bn are called the Wall polynomials; as we will see momentarily, Cn and
Dn can be expressed in terms of An and Bn. By (1.3.62), z divides Cn and Dn, so
we can define Xn and Yn by Cn = zXn, Dn = zYn. Writing(

Cn An

Dn Bn

)(
z−1 0

0 1

)
=

(
Xn An

Yn Bn

)
and using

(
z−1 0
0 1

)−1 ( z γn

γ̄nz 1

) (
z−1 0
0 1

)
=

( z γnz
γ̄n 1

)
shows(

Xn An

Yn Bn

)
=

(
Xn−1 An−1

Yn−1 Bn−1

)(
z γnz
γ̄n 1

)
(1.3.64)
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If one writes out the equations obeyed by An and Xn: An = An−1 + γnzXn−1;
Xn = zXn + γ̄nAn−1, and notes the initial conditions, one finds inductively that
Xn = B∗

n, and similarly, Yn = A∗
n where A∗

n(z) = znAn(1/z̄) as in (1.1.7). We thus
have the equations:

An(z) = An−1(z) + γnzB∗
n−1(z) (1.3.65)

Bn(z) = Bn−1(z) + γnzA∗
n−1(z) (1.3.66)

A∗
n(z) = zA∗

n−1(z) + γ̄nBn−1(z) (1.3.67)

B∗
n(z) = zB∗

n−1(z) + γ̄nAn−1(z) (1.3.68)

A0(z) = γ0 (1.3.69)

B0(z) = 1 (1.3.70)

These last four equations can be nicely summarized in a single matrix equation:

Wn =
(

zB∗
n−1 −A∗

n−1

−zAn−1 Bn−1

)
(1.3.71)

Wn+1 =
(

z −γ̄n

−γnz 1

)
Wn (1.3.72)

with initial condition

W1 =
(

z −γ̄0

−γ0z 1

)
(1.3.73)

The equations hold if all minus signs are dropped; following Pintér-Nevai [868], we
put them in to facilitate the comparison with the transfer matrix in Section 3.2.

Since (
z −γ̄n

−zγn 1

)−1

= z−1(1 − |γn|2)−1

(
1 γ̄n

zγn z

)
(1.3.71)/(1.3.72) imply the inverse recursion relations for A and B:

An−1 = (1 − |γn|2)−1(An − γnB∗
n) (1.3.74)

Bn−1 = (1 − |γn|2)−1(Bn − γnA∗
n) (1.3.75)

This can also be checked directly from (1.3.65)–(1.3.68).
Making the γ-dependence explicit, (1.3.72) also implies

Wn+1(z; γ0, . . . , γn) = Wn(z; γ1, . . . , γn)
(

z −γ̄0

−γ0z 1

)
(1.3.76)

which implies, given (1.3.71),

Bn(z; γ0, . . . , γn) = Bn−1(z; γ1, . . . , γn) + γ̄0zAn−1(z; γ1, . . . , γn) (1.3.77)

An(z; γ0, . . . , γn) = zAn−1(z; γ1, . . . , γn) + γ0Bn−1(z; γ1, . . . , γn) (1.3.78)

Note that, by (1.3.68) and the initial condition, B∗
n is a monic polynomial of

degree n. This means that if γn �= 0, An is also a polynomial of exact degree n.
(1.3.63) now reads

f(z) =
An(z) + zB∗

n(z)fn+1(z)
Bn(z) + zA∗

n(z)fn+1(z)
(1.3.79)
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In particular, the Schur approximant f [n], given by replacing fn+1 by 0 in (1.3.38),
is given by

f [n](z) =
An(z)
Bn(z)

(1.3.80)

Thus (1.3.44) implies ∣∣∣∣ f(z) − An(z)
Bn(z)

∣∣∣∣ ≤ 2|z|n+1 (1.3.81)

so An/Bn converges to f uniformly on compact sets.
Taking determinants of (1.3.71), (1.3.72), and (1.3.73) implies

Bn(z)B∗
n(z) − An(z)A∗

n(z) = zn
n∏

j=0

(1 − |γj |2) (1.3.82)

In particular, Bn and An have no common zeros away from z = 0. Since Bn(0) = 1
(by induction from (1.3.66)), they have no common zero. Thus, analyticity of f [n]

in D implies that all the zeros of Bn lie in C\D. In fact, Bn has no zeros on ∂D,
either, for (1.3.82) on ∂D (using P ∗(z) = zn P (z) if z ∈ ∂D) becomes

z ∈ ∂D ⇒ |Bn(z)|2 − |An(z)|2 =
n∏

j=0

(1 − |γj |2) (1.3.83)

Thus on ∂D, |Bn(z)| > 0.
(1.3.83) implies for z ∈ ∂D,

1 − |f [n](z)|2 = |Bn(z)|−2
n∏

j=0

(1 − |γj |2) (1.3.84)

so, by the maximum principle,

|z| ≤ 1 ⇒ |f [n](z)| ≤ 1 ⇒ |An(z)| ≤ |Bn(z)| (1.3.85)

Since |A∗
n(z)/Bn(z)| = |An(z)/Bn(z)| on ∂D, the maximum principle implies that

|z| ≤ 1 ⇒ |A∗
n(z)| ≤ |Bn(z)| (1.3.86)

9. Aleksandrov Measures

If F is a Carathéodory function and Q is analytic from Cr = {z | Re(z) > 0} to
itself with Q(1) = 1, then Q(F (z)) is also a Carathéodory function. It is particularly
interesting to look at this for Q which are bijections of Cr to itself.

To find the allowed Q’s, it is useful to conformally map Cr to D with 1 to 0.
For if f is a bijection of D to itself with f(0) = 0, then f(z) = λz for some λ ∈ ∂D.
To see this well-known fact, note |f(z)z−1| ≤ r−1 on {z | |z| ≤ r} for 0 < r < 1.
So taking r → 1, |f(z)| ≤ |z| on D. But f has a two-sided functional inverse g, so
|z| = |g(f(z))| ≤ |f(z)|. Thus, |f(z)| = |z| or |f(z)/z| = 1, which implies, by the
maximum principle, that f(z)/z = λ.

If

H(z) =
1 + z

1 − z
H−1(w) =

w − 1
w + 1

(1.3.87)

then H maps D to Cr and 0 to 1. Thus, if Rλ(z) = λz, the maps

Qλ = H ◦ Rλ ◦ H−1 (1.3.88)
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are all the analytic maps of Cr to itself taking 1 to 1. By a direct calculation,

Qλ(w) =
(1 − λ) + (1 + λ)w
(1 + λ) + (1 − λ)w

(1.3.89)

Given F , a Carathéodory function on D, we define the associated family to
{F (λ)(·)}λ∈∂D by

F (λ)(z) =
(1 − λ) + (1 + λ)F (z)
(1 + λ) + (1 − λ)F (z)

(1.3.90)

Since each F (λ)(z) is a Carathéodory function, there are measures dµλ(θ) on ∂D so
that

F (λ)(z) =
∫

eiθ + z

eiθ − z
dµλ(θ) (1.3.91)

The family of measures {dµλ}λ∈∂D is called the family of Aleksandrov measures
associated to the measure dµ assigned to the measure dµ ≡ dµ1 defining F . We have
thus associated to each probability measure on ∂D a natural family of measures.

By (1.3.88), the map H will simplify Q. Indeed, it obviously shows that zf (λ) =
λzf with f the Schur function of dµ. For z �= 0, one can divide by z and then recover
z = 0 by continuity, that is,

f (λ)(z) = λf(z) (1.3.92)
Setting z = 0, we see

γ
(λ)
0 = λγ0 (1.3.93)

Plugging (1.3.92) and (1.3.93) into (1.3.35), one finds f
(λ)
1 (z) = λf1(z). We can

now iterate and find that

f (λ)
n (z) = λf(z) γ(λ)

n = λγn (1.3.94)

This is just framework, but we will see it occur in the study of rank one decom-
positions in Subsection 1.4.16 and also in the analysis of second kind polynomials
in Section 3.2.
10. Inner and Outer Functions and Factors

Any Schur function f has a natural factorization

f = fIfO (1.3.95)

where an inner function is a Schur function, g, where g∗(eiθ) ≡ limr↑1 g(reiθ) obeys
|g∗(eiθ)| = 1 for a.e. θ and fO is an outer function (defined below).

The inner part has a further factorization

f = fBfSI (1.3.96)

where fB is a Blaschke product, that is,

fB(z) = eiθ
∞∏

j=1

z − zj

1 − zz̄j
(1.3.97)

where the zj ’s obey
∞∑

j=1

(1 − |zj |) < ∞ (1.3.98)

(which guarantees convergence of (1.3.97) in D). The singular inner function, fSI ,
is an inner function with no zeros in D.
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An outer function is one of the form

fO(z) = exp
(
−

∫
g(eiθ)

eiθ + z

eiθ − z

dθ

2π

)
(1.3.99)

with g ∈ L1. If fO is a Schur function, g ≥ 0. Outer Schur functions are exactly
those Schur functions, f , with the property that f = hk with h, k Schur functions
and h inner have h(z) = eiγ for some eiγ ∈ ∂D.

The factorization
f = fBfSIfO (1.3.100)

can be constructed as follows. First ([924, p. 311]), one shows that the zeros of a
Schur function obey (1.3.98), so the product in (1.3.97) converges ([924, p. 310]).
Next, one shows h ≡ f/fB is also a Schur function ([924, p. 338]). It follows that
q(z) = − log h(z) is a positive multiple of a Carathéodory function and so

q(z) =
∫

eiθ + z

eiθ − z
dν(θ)

by the Herglotz representation theorem. Writing dν = g(eiθ) dθ
2π + dνs, we obtain

(1.3.100) where

fSI(z) = exp
(
−

∫
eiθ + z

eiθ − z
dνs(θ)

)
(1.3.101)

and fO is given by the right side of (1.3.99).
Note that the measure ν constructed here is only tenuously related to the

measure µ connected to the Carathéodory function associated to f . There is one
important connection: f is inner if and only if µ is purely singular. For ReF (eiθ) =
0 if and only if |f∗(eiθ)| = 1. Thus, to an analyst interested in f , it is interesting
(as we will prove sometimes; see, e.g., Theorems 4.3.4, 10.11.3, 10.11.4, 12.5.2,
12.6.1, and Corollary 9.3.4) that dµac = 0, but whether dµs is pure point or singular
continuous or a mixture is not so interesting because its connection to ν, the measure
of interest for f , is unclear.

In Section 13.8, we will need a generalization of this factorization to a more
general class of analytic functions. We say f , a function on D, is a Nevanlinna
function if and only if

sup
0<r<1

∫
log+(|f(reiθ)|) dθ

2π
< ∞ (1.3.102)

where, for x ≥ 0,
log+(x) = max(0, log(x))

Every Nevanlinna function, f , has a factorization of the form (1.3.100), except
the function g in (1.3.99) need not be positive. An equivalent fact is that any
Nevanlinna function, f , can be written f = h1/h2 where h1 and h2 are Schur
functions and h2 is nonvanishing on D. For proofs of these facts, see [924, pp. 342–
346].
Remarks and Historical Notes. The theory of analytic functions on D with
positive real part goes back to a paper of Carathéodory [183] in 1907, with an ex-
plosion of followup papers in 1911 by Carathéodory himself [184], Toeplitz [1045],
Carathéodory-Fejér [185], Fischer [350], Herglotz [504], and F. Riesz [903]. With
second papers of Fejér [344] and Riesz [904] and Schur’s great papers [948, 949],
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the classical era on the subject was closed; see Duren [316], Hoffman [537], and
Garnett [378] for more modern issues in this arena.

Carathéodory [183] asked the following question: Given a finite sequence of
numbers c0, c1, . . . , cn, when is there an analytic function on D with positive real
part whose Taylor series at 0 is c0 + 2

∑n
j=1 cnzn + O(zn+1) (he did not have the

2 but it is useful to normalize this way, as we have seen). Given his then recent
work on convex sets, not surprisingly, he attacked the problem from that point of
view. Essentially, he noted that the set of such cj ’s is a convex set in R × Cn,
and he identified the extreme points of the subset with c0 = 1 as associated with
what we have called trivial C-functions with at most n poles (equivalently, so that
the Toeplitz matrix, T (n+1), is nonnegative but singular, i.e., det(T (j)) ≥ 0 for
j = 1, 2, . . . , n and det(T (n+1)) = 0).

The Fejér-Riesz theorem is due to them in [344] and [904]. Its analog on the
real axis, that is, P (x) ≥ 0 on R implies P (x) = Q(x̄)Q(x) where Q has all its
zeros in C̄+, is well-known and must long predate their work. Daubechies uses the
Fejér-Riesz theorem as a part of her construction of smooth wavelets of compact
support (see [237, p. 172]). Geronimo-Woerdeman [400] discuss versions of the
Fejér-Riesz theorem for two variables (it is not true without additional restrictions
on the positive polynomial).

Toeplitz matrices and the Carathéodory-Toeplitz theorem are from their papers
[184] and [1045]. They worked in terms of Taylor coefficients of Carathéodory
functions rather than moments of measures. It can be viewed as Bochner’s theorem
for the group, Z, since the positivity of {T (n)} is precisely the assertion that n → cn

is a positive definite function. Interestingly enough, most discussions of the history
of Bochner’s theorem (Lax [687] is an exception!) mention Herglotz’s precursor
for the circle group (and Weil’s extension to general LCA groups and Raikov’s to
Banach algebras), but not Carathéodory-Toeplitz! Of course, it was Bochner who
realized the centrality of this result to Fourier analysis.

Instead of appealing to the Riesz-Markov theorem, the measure can be con-
structed as a limit of explicit measures as follows: If T (n) is singular, there is a
trivial measure (with at most n− 1 points, the zeros of the polynomial P of degree
n−1 with 〈P, T (n)P 〉 = 0) whose moments are {cj}n

j=0. Decreasing c0, we can write
T (n) = an1+ T̃ (n) where T̃ (n) is a positive singular Toeplitz matrix, and an > 0 and
so get the cj ’s as moments of a linear combination of an

dθ
2π and the point measures

associated with T̃ (n).
While Poisson had the formula for the electrostatic potential of a charge distri-

bution on the sphere, which can be viewed as the modern Poisson formula for that
case, the representation (1.3.17) is due to Fatou [340].

The Herglotz representation is due to Herglotz [504] and Riesz [903]. Its
analog for the upper half complex plane has been used especially by Pick and
Nevanlinna, so that the analogs of Carathéodory functions on C+ with positive
imaginary part are called variously, Herglotz, Nevanlinna, or Pick functions. The
standard textbook presentations of the proof use compactness (a.k.a. Helly selection
theorem) to get a limit point of the dµr’s, which is silly because, as noted, it is easy
to see the moments all converge and the Laurent polynomials are dense.

The history of the various limit theorems for the boundary values of functions
with representation (1.3.30) is involved, in part because much of the theory was
developed for R, not ∂D, and in terms of limits of ε−1µ(θ0 − ε, θ0 + ε) rather than
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of F ((1 − ε)eiθ). The names de la Vallée Poussin, Lebesgue, and Fatou should
certainly be mentioned.

With one exception, all the results discussed in Subsections 6–8 are from Schur’s
great papers [948, 949] (parts I and II with a single section numbering). It is
remarkable that in an area that had already been heavily studied by Riesz and
many other very good analysts, Schur not only found something new, but had
stunning insights. His results are very extensive, and include some determinant
equalities that have been frequently used since. (Actually, these equalities appear
in a different form in Sylvester [1012], but his way of looking at them was new; see
[30].)

Because of the time lag from Schur’s work until further study, some of his results
have been ignored and are credited to others. For example, Khrushchev [625]
regards the convergence on compact subsets of D of An/Bn to f as a significant
result and focuses on the 1943 submission dates of papers of Wall [1077] and
Geronimus [404]. But the result was found twenty-five years earlier by Schur! The
convergence of the Schur approximants is Theorem 3.I in [948] and the identification
of the Schur approximants with a ratio of polynomials with recursion relations
(1.3.65)–(1.3.70) are in Section 14 of [949]. Schur even notes that two of his four
polynomials are related via what we would now call the process of reversal. Thus
what are called Wall polynomials predates Wall’s work and are found in Schur [949].
That said, Wall and Geronimus fully appreciated the connection between Schur’s
algorithm and continued fractions and, in particular, that the Schur approximants
are only half the natural continued fraction approximants. In particular, they
realized the recursion formulae (1.3.65)–(1.3.70) can be viewed as cases of the Euler-
Wallis formulae for continued fractions. Further discussion of OPUC from the point
of view of continued fraction approximation can be found in a sequence of papers
by Jones, Nj̊astad, and Thron [577, 579, 580, 581, 582].

(1.3.40) is used in one way of viewing the iterated Schur algorithm as a contin-
ued fraction, and from this point of view, An/Bn are only half the approximants;
see [625].

There is an interesting derivation of Schur’s recurrence relation, (1.3.48), from
the point of view of Wall polynomials. By using (1.3.65) and (1.3.66), one sees the
standard continued fraction formula that

An(z)
Bn(z)

− An−1(z)
Bn−1(z)

=
γnz[Bn−1(z)B∗

n−1(z) − An−1(z)A∗
n−1(z)]

Bn−1(z)Bn(z)

=
znγn

∏n−1
j=0 (1 − |γj |2)

Bn−1(z)Bn(z)

by (1.3.82). By induction and (1.3.66), Bn(0) = 1. (1.3.48) follows immedi-
ately from this formula, (1.3.81), and the fact that An−1/Bn−1 is a function of
γ1, . . . , γn−1.

The recursion relation (1.3.47) and the formula (1.3.48) for the relation of the
Schur parameters to Taylor coefficients is from Section 2 of Schur’s paper [948]. It
is surprising that Verblunsky did not realize the connection to his work, which is
discussed in Section 3.1 below.

The one refinement not in Schur [948, 949] is the precise estimate (1.3.44),
(1.3.45), and (1.3.81). Schur, who estimated Taylor coefficients, had an additional
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factor of (1 − |z|)−1 on the right. The versions we give and their elegant proof via
the Schwarz lemma are taken from Dym-Katsnelson [320].

Blaschke products were introduced by Blaschke [126]. Riesz [906] proved that
if f ∈ Hp(D) and fB is the Blaschke product of its zeros, then f = fBh with h
also in Hp(D). The factorization (1.3.100) is due to Smirnov [990]. Beurling [119]
coined the terms “inner” and “outer.”

1.4. An Introduction to Operator and Spectral Theory

Operator and spectral theory on a Hilbert space are vast subjects which have
parts of great importance to the study of OPUC. Our goal in this section is to
sketch the most important aspects of the spectral theorem for unitary operators
and the theory of trace ideals. This is, of course, no replacement for book-length
treatments, of which I recommend Akhiezer-Glazman [20, 21], Dunford-Schwartz
[314], Reed-Simon [896, 897], or Riesz-Sz.-Nagy [908] for spectral theory and
Gohberg-Krein [440] or Simon [962] for trace ideals. In particular, we will not
discuss unbounded selfadjoint operators. As in the last two sections, we eschew
set-out definitions, theorems, and proofs. Throughout this section, operators are
assumed to act on a separable Hilbert space, H.
1. Selfadjoint, Normal, and Unitary Operators

Given an everywhere defined bounded operator, A, on a separable Hilbert space,
H, its adjoint is defined by 〈A∗ϕ,ψ〉 = 〈ϕ,Aψ〉 for all ϕ,ψ ∈ H. A is called
selfadjoint if A = A∗ and unitary if AA∗ = A∗A = 1. If AA∗ = A∗A, we call A
normal. Obviously, selfadjoint and unitary operators are normal.

We will occasionally need to use antilinear operators which obey A(aϕ+ bψ) =
āAϕ+b̄Aψ. An anti-unitary operator is an antilinear operator, A, with ‖Aϕ‖ = ‖ϕ‖
and ran(A) = H. It obeys 〈Aϕ,Aψ〉 = 〈ψ,ϕ〉.
2. Spectrum, Resolvent, and Green’s Functions

If B is a bounded operator, we say B is invertible if and only if there exists a
bounded operator C with BC = CB = 1. We then write B−1 = C. Unlike the case
for finite matrices, it is not sufficient that a one-sided inverse exist. For example,
if L is the operator on �2(Z+) given by Lδn = δn−1 (= 0 if n = 0) and R is given
by Rδn = δn+1, then LR = 1, but neither L nor R has a two-sided inverse.

The set of invertible operators is open in the ‖·‖-topology of operators. Indeed,
if ‖X‖ < ‖B−1‖−1, then

(B + X)−1 = B−1
∞∑

j=0

(−1)j(XB−1)j (1.4.1)

where the series is absolutely convergent since ‖XB−1‖ ≤ ‖X‖ ‖B−1‖ < 1 by
assumption.

If B is a bounded operator, the resolvent set of B, denoted by ρ(B), is the set
of z ∈ C with B − z invertible. The spectrum, σ(B), of B is the complement of
ρ(B). By (1.4.1), ρ(B) is open, and so σ(B) is closed. If z > ‖B‖, (B − z)−1 =
−z−1

∑∞
j=0(z

−1B)j so z ∈ ρ(B), that is,

σ(B) ⊂ {z | |z| ≤ ‖B‖} (1.4.2)

If C is invertible, then BC is invertible if and only if B is invertible and
(BC)−1 = C−1B−1. In particular, writing (B − z) = −zB(B−1 − z−1), we see




