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initially for f ∈ C(X), but then for f ∈ L1(dν) since C(X) is dense in L1. Thus L
has the form

L(f) =
∫

wf dν

with w ∈ L∞. Since L(f) ≥ 0, w ≥ 0 and w = dµ/dν. Moreover,
s∞ = supf∈C(X){

∫
f dµ/

∫
f dν} = supf∈L1 |L(f)|/‖f‖L1(dν) = ‖w‖∞. This is

(2.2.115). �
Of course, with the leading behavior of the extreme eigenvalues, one can ask

about corrections. Kac, Murdock, and Szegő [603] showed that if f has a single
nondegenerate minimum, the low-lying eigenvalues occur at minθ(f(θ)) + cν2/n2

where n is the size of the Toeplitz matrix, ν is the eigenvalue label, and c an explicit
constant (1

2π2f ′′(θ0) if θ0 is the unique minimum). This led to a huge industry; see
[91, 107, 240, 241, 269, 508, 519, 520, 527, 601, 621, 728, 773, 774, 775,
839, 840, 956, 1054, 1055, 1056, 1075, 1093, 1108]. See [602] for applications
of these ideas to Schrödinger operators.

Since we are discussing asymptotics of the lowest eigenvalues of Toeplitz matri-
ces, we mention a beautiful result of Berg, Chen, and Ismail [108] that the lowest
eigenvalue of a Hankel matrix has a nonzero limit if and only if the associated
OPRL moment problem is indeterminate.

2.3. Entropy Semicontinuity and the First Proof of Szegő’s Theorem

In this section, we will prove the following, which we call Szegő’s theorem:

Theorem 2.3.1. Let

dµ = w(θ)
dθ

2π
+ dµs

and let {αj}∞j=0 be the Verblunsky coefficients of µ. Then
∞∏

j=0

(1 − |αj |2) = exp
(∫ 2π

0

log(w(θ))
dθ

2π

)
(2.3.1)

Remarks. 1. As noted, the integral on the right can be −∞, which the theorem
asserts happens if and only if

∑|αj |2 = ∞.
2. It is remarkable that (2.3.1) is independent of dµs!
3. Szegő’s ideas involve the equality of (2.3.1) with two other objects, as we

have seen: limn→∞ n
√

Dn(dµ) and λ∞(0, dµ). Theorems 2.7.14 and 2.7.15 will
summarize huge numbers of equivalences that form “Szegő’s theorem.”

The key to our proof will be to view the right side of (2.3.1) as a function
of µ and to prove that in the weak topology on measures, the right side is upper
semicontinuous (usc). It certainly cannot be continuous since dµ = dθ/2π (i.e.,
w = 1 so the integral is 0) is a weak limit of pure point measures for which w = 0,
so the integral is −∞. In fact, it is a special case of the entropy where:
Definition. Let µ, ν be two (positive) measures on a compact metric space X.
Define their relative entropy in R ∪ {−∞} by

S(µ | ν) =

{−∞ if µ is not ν a.c.

− ∫
log

(
dµ
dν

)
dµ if µ is ν a.c.

(2.3.2)
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Example 2.3.2. If

dν = w(θ)
dθ

2π
+ dνs

and dµ = dθ/2π, then µ is ν a.c. so long as w > 0 a.e. θ (dµ) and dµ/dν = w−1 so

S

(
dθ

2π

∣∣∣∣ w(θ)
dθ

2π
+ dνs

)
=

∫ 2π

0

log(w(θ))
dθ

2π
(2.3.3)

Similarly, if ζ ∈ D with ζ = reiϕ and

dµζ(θ) = Pr(θ, ϕ)
dθ

2π
(2.3.4)

then

S

(
dµζ

∣∣∣∣ w(θ)
dθ

2π
+ dνs

)
=

∫ 2π

0

log
(

w(θ)
Pr(θ, ϕ)

)
Pr(θ, ϕ)

dθ

2π
(2.3.5)

which is a quantity that arose in (2.2.7). �

Lemma 2.3.3 (Linear Variational Principle for S). Let E(X) be the family of
strictly positive continuous functions on X. Then

S(µ | ν) = inf
f∈E(X)

S(f ;µ, ν) (2.3.6)

where

S(f ;µ, ν) =
∫

f(x) dν(x) −
∫

[1 + log(f(x))] dµ(x) (2.3.7)

Proof. Suppose first that µ is ν-a.c. and let dµ = g dν and A = {x | g(x) �= 0}.
Define for a, b > 0,

Q(a, b) = ab−1 − 1 − log(a) (2.3.8)
For b fixed, Q is convex in a and takes its minimum at a = b with Q(a, b) = − log(b).
Thus

Q(a, b) ≥ − log(b) (2.3.9)
and, by convexity, Q is monotone decreasing in a on (0, b) and monotone increasing
in a on (b,∞).

Since
dν = χX\A dν + g−1 dµ (2.3.10)

we can write

S(f ;µ, ν) =
∫

X\A

f(x) dν(x) +
∫

Q(f(x), g(x)) dµ(x) (2.3.11)

By (2.3.9) and f ≥ 0, we have

S(f ;µ, ν) ≥ S(µ | ν) (2.3.12)

proving half of (2.3.6).
For the other direction, we need an approximation argument. Let E(X;µ, ν) =

{f ∈ L1(dµ + dν) | ε ≤ f ≤ ε−1 for some ε > 0}. For f ∈ E(X;µ, ν), define
S(f ;µ, ν) by (2.3.7). For any such f , there exists fn ∈ E(X) so ε ≤ fn ≤ ε−1

uniformly in n and fn(x) → f(x) for a.e. x(dµ+dν). By (2.3.7) and the dominated
convergence theorem, S(fn;µ, ν) → S(f ;µ, ν), so

inf
f∈E(X)

S(f ;µ, ν) = inf
f∈E(X;µ,ν)

S(f ;µ, ν) (2.3.13)



138 2. SZEGŐ’S THEOREM

Define

fn(x) =

⎧⎪⎨
⎪⎩

n−1 if x /∈ A or g(x) ≤ n−1

g(x) if n−1 ≤ g(x) ≤ n

n if g(x) ≥ n

Then
∫

X\A
fn(x)dν(x) = n−1ν(X\A) → 0. For each n,

∫ |Q(fn(x), g(x))| dµ(x) <

∞ since |Q(fn(x), g(x))| ≤ ng−1(x)+1+log(n) and g−1 ∈ L1(dµ). Moreover, by the
monotonicity properties of Q, Q(fn(x), g(x)) is monotone decreasing to − log(g(x)).
Since − ∫

log(g(x)) dµ = S(µ | ν) (which may be −∞), S(fn;µ, ν) → S(µ | ν),
proving (2.3.6) if µ is ν-a.c.

If µ is not ν-a.c., find A with ν(A) = 0 and µ(A) > 0, and then, given ε, K
compact and Uε open so K ⊂ A ⊂ Uε and µ(K) > 0, ν(Uε) < ε. By Urysohn’s
lemma, find Fε ∈ C(X) so 1 ≤ Fε ≤ ε−1 for all x, Fε = ε−1 on K, and Fε = 1 on
X\Uε. Then

S(Fε;µ, ν) ≤ ν(X\Uε) + ε−1ν(Uε) − log(ε−1)µ(K)

≤ 2 − log(ε−1)µ(K) → −∞
so the inf is −∞. �

Theorem 2.3.4. S(µ | ν) is jointly concave and jointly weakly upper semicon-
tinuous in µ and ν. Moreover, if µ and ν are both probability measures, S(µ | ν) ≤ 0
with equality only if µ = ν.

Remark. By jointly concave, we mean

S(θµ1 + (1 − θ)µ0 | θν1 + (1 − θ)ν0) ≥ θS(µ1 | ν1) + (1 − θ)S(µ0 | ν0)

Proof. (2.3.6) says that S is an inf of jointly continuous linear functions;
hence, it is automatically jointly concave and jointly weakly upper semicontinuous.

If µ is ν-a.c., let A = {x | dµ/dν(x) �= 0} and dν̃ = χA dν. Then

S(µ | ν) =
∫

log
(

dν̃

dµ

)
dµ

≤ log
(∫

dν̃

dµ
dµ

)
(by Jensen’s inequality)

= log(ν(A)) ≤ 0

Since log is strictly concave, we have equality if and only if ν(A) = 1 and dν/dµ is
a constant, hence 1. �

Remark. One tends to think of the lack of full continuity as connected with zeros
of dµ/dν or cases where µn are not ν-a.c. but µ = w-lim µn is. But noncontinuity
can happen in more benign-looking cases. On ∂D, let µn = [1−α cos(nθ)] dθ

2π where
|α| < 1, α real. By a simple change of variables,

S

(
dθ

2π

∣∣∣∣ µn

)
=

∫
log(1 − α cos(θ))

dθ

2π

=
∫

log
(∣∣∣∣z − α

2
− αz2

2

∣∣∣∣
)

dz

2π

= log
[
1
2

(
1 +

√
1 − α2

)]
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where we used Jensen’s formula and the fact that the zero, z0, of f(z) = αz2

2 + α
2 −z

has 1
|z0| = 2

α [12 (1 +
√

1 − α2)]. Thus, if α �= 0,

limS

(
dθ

2π

∣∣∣∣ µn

)
< S

(
dθ

2π

∣∣∣∣ dθ

2π

)
= 0

Proof of Theorem 2.3.1. Let

dµn =
dθ

2π
|ϕ∗

n(eiθ; dµ)|−2 (2.3.14)

be the Bernstein-Szegő approximation to dµ. By (1.5.78) and Theorem 2.1.4,
n−1∏
j=0

(1 − |αj |2) = exp
[
S

(
dθ

2π
, dµn

)]
(2.3.15)

By (2.2.7) (for ζ = 0) and (2.2.3),
∞∏

j=0

(1 − |αj |2) ≥ exp
[
S

(
dθ

2π
, dµ

)]
(2.3.16)

In (2.3.15), let n → ∞. Clearly,
∏n−1

j=0 (1 − |αj |2) → ∏∞
j=0(1 − |αj |2). Since

dµn → dµ weakly (Theorem 1.7.8), the weak usc of S implies

lim sup S

(
dθ

2π
, dµn

)
≤ S

(
dθ

2π
, dµ

)
(2.3.17)

so (2.3.15) says
∞∏

j=0

(1 − |αj |2) ≤ exp
[
S

(
dθ

2π
, dµ

)]
(2.3.18)

(2.3.16) and (2.3.18) imply (2.3.1). �

Remark. By our reference to (2.2.7), a result for general ζ, the simplicity of
(2.3.16) may be obscured. Basically, it comes from

n−1∏
j=0

(1 − |αj |2) = ‖Φ∗
n‖2

≥
∫

exp(log|Φ∗
n(eiθ)|2 + log w(θ))

dθ

2π
(2.3.19)

≥ exp
(∫

log w(θ)
)

dθ

2π
(2.3.20)

where (2.3.19) comes from dµ ≥ w(θ) dθ
2π and (2.3.20) from Jensen’s inequality and∫

log|Φ∗
n(eiθ)| dθ

2π = log|Φ∗
n(0)| = 0 since log|Φ∗

n| is harmonic on account of the lack
of zeros of Φ∗

n in D. (2.3.20) implies (2.3.16) by taking limits.
Since (2.2.3) says

∏∞
j=0(1 − |αj |2) = λ∞(0), Szegő’s theorem can be regarded

as the ζ = 0 case of the following more general theorem:

Theorem 2.3.5 (Generalized Szegő Theorem). Let dµ = w(θ) dθ
2π + dµs. Then

for any ζ ∈ D with ζ = reiϕ,

λ∞(ζ) = exp
(∫ 2π

0

Pr(θ, ϕ) log
(

w(θ)
Pr(θ, ϕ)

)
dθ

2π

)
(2.3.21)
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Remarks. 1. (2.3.21) is intended to say λ∞(ζ) = 0 if and only if∫ 2π

0
log(w(θ)) dθ = −∞, proving Proposition 2.2.2 again.
2. (2.3.21) says λ∞(ζ) is independent of dµs!

Proof. Let dµ(ζ)(θ) = Pr(θ, ϕ) dθ
2π and define dµn by (2.3.14). Then (2.2.7)

and (2.3.5) say that
λ∞(ζ, dµ) ≥ exp[S(dµ(ζ) | dµ)] (2.3.22)

for any measure. Theorem 2.2.3(ii) says

λ∞(ζ, dµn) = exp[S(dµ(ζ) | dµn)] (2.3.23)

and Theorem 2.2.6 says

lim
n→∞ λ∞(ζ, dµn) = λ∞(ζ, dµ) (2.3.24)

By usc of the entropy and Theorem 1.7.8,

lim sup S(dµ(ζ) | dµn) ≤ S(dµ(ζ) | dµ) (2.3.25)

(2.3.23)–(2.3.25) imply

λ∞(ζ, dµ) ≤ exp[S(dµ(ζ) | dµ)] (2.3.26)

(2.3.22), (2.3.26), and (2.3.5) imply (2.3.21). �

We close this section by seeing another way to go from Theorem 2.3.1 to The-
orem 2.3.5. We begin with

Lemma 2.3.6. Let A(D) denote the set of continuous functions on D̄ analytic
on D. Then

λ∞(ζ) = inf
(∫

|F (eiθ)|2 dµ(θ)
∣∣∣∣ F (ζ) = 1, F ∈ A(D)

)

Proof. By replacing F (eiθ) by F (reiθ) and letting r ↑ 1, we see the inf over
A(D) is the same as the inf over functions analytic in a neighborhood of D̄ (since
F (reiθ) → F (eiθ) uniformly, integrals over µ converge even if µ has a singular
part). Such functions can be uniformly approximated by polynomials, so the inf
over polynomials is the same. �

Proof of Theorem 2.3.5 from Theorem 2.3.1. Fix ζ ∈ D. Let g be the
conformal map of D̄ → D̄,

g(z) =
z − ζ

1 − ζ̄z

Define g̃ : [0, 2π) → [0, 2π) by g(eiθ) = eig̃(θ). If ζ = reiϕ, a straightforward
calculation shows that

dg̃

dθ
= Pr(ϕ, θ) (2.3.27)

We will also need another direct calculation,

Pr(π + ϕ, g̃(θ)) =
1

Pr(ϕ, θ)
(2.3.28)

and that

g−1(z) =
z + ζ

1 + ζ̄z
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so, by (2.3.28),
dg̃−1

dθ
= Pr(π + ϕ, θ) (2.3.29)

Since g(ζ) = 0,

λ∞(ζ, dµ) = inf
(∫

|F (eiθ)|2 dµ(θ)
∣∣∣∣ (F ◦ g−1)(0) = 1, F ∈ A(D)

}

= inf
(
|F ◦ g(eiθ)|2 dµ(θ)

∣∣∣∣ F (0) = 1, F ∈ A(D)
}

= inf
(∫

|F (eiθ)|2 dµ(g̃−1(θ))
∣∣∣∣ F (0) = 1, F ∈ A(D)

}
= λ∞(0, dµ ◦ g̃−1)

If dµ(θ) = w(θ) dθ
2π + dµs(θ), since g̃−1 is C∞ with C∞ inverse,

dµ ◦ g̃−1 = w(g̃−1(θ))
dg̃−1

dθ

dθ

2π
+ dµ̃s

Thus, by Theorem 2.3.1 and (2.3.29),

λ∞(0, dµ ◦ g̃−1) = exp
(∫ 2π

0

log[Pr(π + ϕ, θ)w(g̃−1(θ))]
dθ

2π

)

= exp
(∫ 2π

0

log[Pr(π + ϕ, g̃(θ))w(θ)]
dg̃

dθ

dθ

2π

)

= exp
(∫ 2π

0

log
[

w(θ)
Pr(ϕ, θ)

]
Pr(ϕ, θ)

dθ

2π

)

by (2.3.27) and (2.3.28). This proves (2.3.21). �

Remarks and Historical Notes. In his first pair of papers on OPUC, Szegő
[1018, 1019] proved the equality of lim n

√
Dn(dµ), exp(

∫ 2π

0
log(w(θ)) dθ

2π ), and
λ∞(0) for measures of the form dµ = w(θ) dθ

2π . Verblunsky [1067] is responsible
both for the fourth equality to

∏∞
j=0(1− |αj |2) and for handling a singular contin-

uous component.
In the West, Verblunsky’s paper was not appreciated — and the standard story

line is that Kolmogorov [642] had the first results which allowed singular compo-
nents; he did not have the full equality. Rather he proved that the polynomials were
dense in L2(∂D, dµ) if and only if

∫
log(w(θ)) dθ

2π = −∞. Krein [652, 653] extended
this to Lp(∂D, dµ) (see Section 2.5 below), realized the connection to Szegő’s work,
and found analogs for L2(R, dµ) (see below). According to the standard story, the
full theorem with the equality for general µ is due to Szegő in 1958 in [479] (while
the book has two authors, the introduction says that the chapters on this theo-
rem are due to Szegő). There are two problems with this story. First, Verblunsky
[1067] had the full result 20+ years before Szegő and even five years before Kol-
mogorov. Second, Geronimus has the result in his 1958 book [407] and one of his
students claims [6] he found it independently of Verblunsky. That is possible —
but if so, Geronimus must have known of it very early since his sporadic quotations
of Verblunsky began in the 1940’s.

Szegő’s theorem has been extended to a variety of other situations. Let dσ be
a finite measure on (−∞,∞). Krein [652, 653] showed that {eiαx}α≥0 is dense in
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L2(R, dσ) if and only if dσ = w dx + dσs and
∫ ∞
−∞|log w|(1 + x2)−1 dx = ∞. If this

integral is finite, this family is not dense and, a fortiori, if
∫ |x|n dσ(x) < ∞ for all

n, {xn}∞n=0 is not dense so the moment problem is indeterminate. Krein also noted
that for w supported on [0,∞), if∫ ∞

0

|log w(x)|
1 + x

dx√
x

< ∞

then the Stieltjes moment problem is indeterminate.
For a discussion of limit theorems for Dn+1(c)/Dn(c) for c’s which do not come

from a measure (e.g., c’s which are Fourier coefficients of an L∞ function), see
Böttcher-Silbermann [146, Section 5.4] and references therein.

In Section 13.8, we will discuss analogs of Szegő’s theorem for OPRL using
ideas close to the proof in this section. Indeed, our proof here is patterned after
the Killip-Simon [633] proof of Theorem 13.8.6. The proof here, in turn, is related
to Verblunsky’s, as we will discuss shortly.

Semicontinuity of µ → S(µ | ν) for fixed ν is a standard part of the theory of
entropy. Semicontinuity in ν and joint semicontinuity is not so commonly known
but does appear sporadically; see, for example, Topsøe [1048].

Variational principles for thermodynamic quantities go back to Gibbs. While
Gibbs focused on a principle for the free energy, there is an inverse Gibbs principle
for the entropy, essentially by Fenchel’s theorem [347] on double Legendre trans-
forms. The modern era for such principles was ushered in by Lanford-Robinson
[674]; see Simon [967]. The real analog of the Gibbs principle for a pair, µ, ν, of
probability measures is not (2.3.6) but

S(µ | ν) = inf
g∈C(X)

[
log

∫
eg dν −

∫
g dµ

]
(2.3.30)

If we set G(g) = log
∫

eg dν − ∫
g dµ and K(f) =

∫
f(x) dν − 1− ∫

log(f(x)) dµ,
we have

K(eg) ≥ G(g) ≥ S(µ | ν) (2.3.31)
The first inequality in (2.3.31) comes from y − 1 ≥ log(y) for y > 0 (use concavity
of log(y)). The second comes from∫

eg dν ≥
∫

A

eg

(
dµ

dν

)−1

dµ ≥ exp
(∫

g dµ −
∫

log
(

dµ

dν

)
dµ

)
via Jensen’s inequality. (2.3.31) and (2.3.6) imply (2.3.30).

Remarkably, while he did not know he was using an entropy, a key element of
Verblunsky’s proof was the formula for dµ = w(θ) dθ

2π + dµs:

inf
[ ∫

eg dµ

exp
(∫

g dθ
2π

)] = exp
(∫

log(w(θ))
dθ

2π

)
(2.3.32)

which is, of course, (2.3.30) for S((dθ/2π) | µ)! While he does not organize his
proof as we do, there is clearly a close connection between his proof and the one in
this section.

Verblunsky goes from (2.3.32) to (2.3.1) as follows: Let Ln be the positive
Laurent polynomials spanned by {zj}n

j=−n. Since ∪nLn is dense in C(X), (2.3.32)
implies

inf
n

Vn(µ) = exp
(∫

log(w(θ))
dθ

2π

)
(2.3.33)
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where

Vn(µ) = inf
Pn∈Ln

[ ∫
Pn dµ

exp
(∫

log(Pn) dθ
2π

)] (2.3.34)

Next, he used that Theorem 1.7.8 implies∫
Pn dµ =

∫
Pn

∏n−1
j≡0 (1 − |αj |2)

|Φ∗
n|2

dθ

2π
(2.3.35)

for any Pn ∈ Ln, so in (2.3.34), we can replace dµ by the Bernstein-Szegő approxi-
mation.

Taking P = |Φ∗
n|2 = Φ∗

n(z)Φ∗
n(z) ∈ Ln, we see that the inf is no more than∏n−1

j=1 (1 − |αj |2) since
∫

log|Φ∗
n(z)| dθ

2π = 1 by (2.1.16). On the other hand, using
Jensen’s inequality and (2.1.16), we see that

∏n−1
j=1 (1 − |αj |2) is always a lower

bound. Thus

Vn(µ) =
n−1∏
j=1

(1 − |αj |2) (2.3.36)

so (2.3.33) implies (2.3.1).
That

∫
log(w(θ)) dθ

2π is an entropy (although not the resulting semicontinuity)
has been noted in the literature; see Foias-Frazho [358].

One consequence of Szegő’s theorem is that among all measures µ with a given
set c0 = 1, . . . , cn of moments,

∫
log(w(θ)) dθ

2π is maximized by taking dµ to be
the Bernstein-Szegő approximation dθ

2π |ϕn|−2 with ϕn the OPUC determined by
c0, . . . , cn. For all such µ have the same α0, . . . , αn−1, so

∏∞
j=0(1 − |αj |2) ≤∏n−1

j=0 (1 − |αj |2) = value for Bernstein-Szegő approximation. This maximum
entropy property has been extensively discussed in the engineering literature
[282, 283, 313, 358, 749, 786].

In a sense, the miracle of the proof of Verblunsky and the one in this section, as
opposed to the one in Section 2.5, is that the fact that dµs does not matter passes
by without any explicit argument. In a sense, it is in the proof of (2.3.6). Making
f small on a set of small µ measure decreases the ν integral without a cost in the
µ integral. There is another way of putting this: The proof in Section 2.5 requires
us to show that small sets do not matter in approximating by analytic functions,
and that is a little tricky. In (2.3.6), only continuous functions enter.

For a history of ideas related to Theorem 2.3.4, see the discussion in Killip-
Simon [633]. Theorem 2.3.5 is also due to Szegő in [1018, 1019]. The discussion
under “Proof of Theorem 2.3.5 from Theorem 2.3.1” using conformal mapping
fleshes out a remark in Máté-Nevai-Totik [761].

2.4. The Szegő Function

As a part of the analysis of what happens when the Szegő condition∫ 2π

0

log(w(θ))
dθ

2π
> −∞ (2.4.1)

holds, Szegő introduced a natural analytic function, D(z). It will turn out to be
1/∆(z) with ∆(z) the function of (2.2.92), but that function is part of the Freudian
parallel universe and its construction will not be assumed in the first part of this
section.


