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number include Fisher-Hartwig [351], Böttcher-Silbermann [145], Widom [1093],
Day [243], Trench [1053], Berg [109], Høholdt-Justesen [538], Gorodetsky [474],
Bart-Gohberg-Kaashoek [85], Gohberg-Kaashoek-van Schagen [438], Basor-Chen
[89], and Carey-Pincus [186].

In [1098, 1099], Widom discussed Szegő’s theorem in case the c’s in a Toeplitz
matrix are themselves matrices.

Kac [599] discussed the relevance of the strong Szegő theorem to the asymp-
totics of 1

nTr(T �
n), finding explicit two-term formulae; see Section 6.5 and our dis-

cussion of Libkind [700] in the Notes to Section 2.7.
For extensions of the strong Szegő theorem to general manifolds, see the dis-

cussion at the end of the Notes to Section 2.7.
The ideas behind our Example 6.1.14 are motivated by Weierstrass’ construc-

tion of nowhere differentiable functions [923, Example 7.18], the theory of Haar
and Walsh functions [824], and the theory of wavelets [237, 555, 1079, 1110].
They are surely well-known to harmonic analysts.

6.2. The Borodin-Okounkov Formula

In this section, we will provide a second proof of Ibragimov’s theorem that
depends neither on the calculations in Theorem 2.1.3 nor on Baxter’s theorem nor
on the calculations in Lemma 6.1.4. Instead it will depend on a remarkable exact
formula for

Dn(w dθ
2π )

exp((n + 1)L̂0 +
∑∞

k=1 k|L̂k|2)
(6.2.1)

whose form is such that it will immediately imply the ratio goes to 1 as n → ∞.
Exact formulae are often more algebraic than analytic, and that is true here: While
there will be a few analytic steps (i.e., estimates), this section will largely involve
some remarkable algebra.

The exact formula for (6.2.1) will involve Hankel operators, so we begin by
discussing them, first on the level of sequences. Given any sequence {an}n∈Z, one
defines the matrices t(a), h(a), and h(ã) by

t(a) =

⎛
⎜⎜⎝

a0 a1 a2 . . .
a−1 a0 a1 . . .
a−2 a−1 a0 . . .
. . . . . . . . . . . .

⎞
⎟⎟⎠ h(a) =

⎛
⎜⎜⎝

a1 a2 a3 . . .
a2 a3 a4 . . .
a3 a4 a5 . . .
. . . . . . . . . . . .

⎞
⎟⎟⎠

h(ã) =

⎛
⎜⎜⎝

a−1 a−2 a−3 . . .
a−2 a−3 a−4 . . .
a−3 a−4 a−5 . . .
. . . . . . . . . . . .

⎞
⎟⎟⎠

(6.2.2)

that is, with i, j ≥ 0,

t(a)ij = ai−j h(a)ij = ai+j+1 h(ã)ij = a−i−j−1 (6.2.3)

t is a Toeplitz matrix, h a Hankel matrix. Toeplitz matrices are constant along the
usual matrix diagonals, Hankel matrices along the opposite diagonals.

This notation is consistent with the definition

ãj = a−j (6.2.4)

Notice that t depends on all aj but h(a) only on aj for j ≥ 1.
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t(a) and h(a) define potentially unbounded operators on �2(Z+) by taking as
domain F = {{an} | an ≡ 0 for every n large}. If t(a) (or h(a)) is bounded, that
is, ‖t(a)ψ‖ ≤ C‖ψ‖ for all ψ ∈ F , we can extend the operator to all of �2 and we
use the same symbol.

Given f , a distribution on ∂D, let

aj =
∫

e−ijθf(θ) dθ (6.2.5)

and define
T (f) = t(a) H(f) = h(a) H(f̃) = h(ã) (6.2.6)

T and H are called Toeplitz operators and Hankel operators; f is called the symbol
of T or H. In this section, our symbols will be L1(∂D, dθ

2π ) functions.
Here is one reason why it is useful to employ symbols:

Theorem 6.2.1. If f ∈ L∞(∂D, dθ
2π ), T (f) and H(f) are bounded operators.

Indeed,

‖T (f)‖ ≤ ‖f‖∞ (6.2.7)

‖H(f)‖ ≤ ‖f‖∞ (6.2.8)

Remark. As we will discuss in the Notes, equality holds in (6.2.7), so T (f) is
bounded if and only if f ∈ L∞. It is for this reason that we will want to approximate
f ’s by ones for which f ∈ L∞. Again, as we will discuss in the Notes, equality in
(6.2.8) is more subtle. H(f) only depends on {an}n≥1 so f �→ H(f) has a large
kernel. Equality holds in (6.2.8) if one replaces ‖f‖∞ by ‖f‖L∞/ ker(H), that is, by

inf
g

{
‖g‖∞

∣∣∣∣
∫

(g − f)e−ijθ dθ = 0; j = 1, 2, . . .

}
This refined result is Nehari’s theorem.

Proof. Let H = �2(Z). On H, define P+, P−, J by

(P+x)n = χ[0,∞)(n)xn (P−x)n = χ(−∞,−1](n)xn Jxn = x−n−1 (6.2.9)

Also, for any f with a given by (6.2.5), define the convolution operator C(f)
by

(C(f)x)n =
∑
m

an−mxm

initially for x’s that have finitely many nonzero elements. If f ∈ L∞, then

C(f)x = (fx̌)̂ (6.2.10)

where ̂ is Fourier transform from L2(∂D, dθ
2π ) to �2(Z) and ∨ is its inverse. (6.2.10)

and unitarity of Fourier transform implies that

‖C(f)x‖H ≤ ‖f‖∞‖x‖H
so

‖C(f)‖ ≤ ‖f‖∞ (6.2.11)
To obtain (6.2.7) and (6.2.8), we use these important, easy-to-check, identities:

T (f) = P+C(f)P+ � P+H (6.2.12)

H(f) = P+C(f)JP+ � P+H (6.2.13)

H(f̃) = P+JC(f)P+ � P+H (6.2.14)
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Since J and P+ are contractions, (6.2.14) immediately implies (6.2.7) and (6.2.8).
�

Since
JP+ = P−J JP− = P+J (6.2.15)

we can rewrite (6.2.13) and (6.2.14) as

H(f) = P+C(f)P−J (6.2.16)

H(f̃) = JP−C(f)P+ (6.2.17)

Notice that
t(a)t = t(ã)

and
h(a)t = h(a)

so

t(a)∗ = t(¯̃a) (6.2.18)

h(a)∗ = h(ā) (6.2.19)

where āj = aj . If a(f) is given by (6.2.5), then a(f̄) = (a(f))¯̃, so (6.2.18) becomes

T (f)∗ = T (f̄) (6.2.20)

Moreover, (6.2.19) becomes

H(f)∗ = H( ¯̃
f) (6.2.21)

One might wonder why Hankel operators arise in studying Toeplitz operators.
The reason is the following simple but fundamental fact:

Theorem 6.2.2. Let f, g ∈ L∞. Then

T (fg) = T (f)T (g) + H(f)H(g̃) (6.2.22)

Proof. We have that

T (fg) = P+C(f)C(g)P+

= P+C(f)(P+ + P−)C(g)P+

= (P+C(f)P+)(P+C(g)P+) + (P+C(f)P−J)(JP−C(g)P+)

since P−J2P− = P 2
− = P−. (6.2.12), (6.2.16), and (6.2.17) complete the proof. �

H∞(D) is the set of functions, f , in L∞(∂D) with a given by (6.2.5) obeying
aj = 0 for j < 0. H∞(D), the set of f ’s with f̄ ∈ H∞, clearly obeys aj = 0 if j > 0.
Thus

f ∈ H∞ ⇒ H(f̃) = 0 (6.2.23)

f ∈ H∞ ⇒ H(f) = 0 (6.2.24)

This implies

Corollary 6.2.3. Let g ∈ L∞. If f ∈ H∞, then T (fg) = T (g)T (f). If
f ∈ H∞, then T (fg) = T (f)T (g).
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Proof. If f ∈ H∞, by (6.2.22) and (6.2.23),

T (fg) − T (g)T (f) = H(g)H(f̃) = 0

and if f ∈ H∞,
T (fg) − T (f)T (g) = H(f)H(g̃) = 0 �

These formulae provide another way of seeing the Wiener-Hopf theorem:

Corollary 6.2.4. Let x+ ∈ H∞, x− ∈ H∞ with infz∈D̄|x+(z)| > 0 and
infz∈C\D|x−(z)| > 0. Then T (x+x−) is invertible and

T (x+x−)−1 = T (x−1
+ )T (x−1

− ) (6.2.25)

Proof. By hypothesis, x−1
+ ∈ H∞ and x−1

− ∈ H∞. Thus, by Corollary 6.2.3,

T (x+x−1
+ ) = T (x+)T (x−1

+ )

= T (x−1
+ )T (x+)

so T (x±) are invertible and

T (x±)−1 = T (x−1
± ) (6.2.26)

By Corollary 6.2.3 again,

T (x+x−) = T (x−)T (x+)

so, since T (x±) are invertible and

T (x+x−)−1 = T (x+)−1T (x−)−1

= T (x−1
+ )T (x−1

− )

by (6.2.26). �

Now let w ≥ 0 with log w ∈ L1(∂D, dθ
2π ) and define D by (2.4.2) and define on

∂D,

b =
D̄

D
c =

D

D̄
(6.2.27)

in terms of the a.e. boundary values of D. Clearly, |b| = |c| = 1, so b, c ∈ L∞, and
so are symbols of bounded Toeplitz and Hankel operators.

As in Section 5.1, we define Qn and Rn on �2(Z+) by

(Qna)j = χ[0,n](j)aj Rn = 1 − Qn (6.2.28)

Here are the two facts that we will prove below that are the sharp Borodin-
Okounkov formula:

Fact 1. If log w =
∑

k L̂keikθ and∑
k

|k| |L̂k|2 < ∞ (6.2.29)

then H(b) and H(c̃) are Hilbert-Schmidt, so H(b)H(c̃) is trace class.
Fact 2. If (6.2.29) holds, then

(6.2.1) = detRnH(1 − RnH(b)H(c̃)Rn) (6.2.30)
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Remarks. 1. By (6.2.21) and b = c̄, we have

H(b)∗ = H(c̃) (6.2.31)

and by (6.2.20),
T (b)∗ = T (c)

2. detRnH is the Fredholm determinant for 1+ trace class operators; see Sub-
section 1.4.12.

3. (6.2.30) is the Borodin-Okounkov formula. As we will discuss in the Notes,
it was found by Geronimo-Case almost twenty-five years before Borodin-Okounkov!
We say this is the sharp form because earlier versions had stronger conditions than
(6.2.29), which is not only sufficient for the formula to hold, but necessary for (6.2.1)
to make sense.

The proof will depend on the following sequence of steps:
Step 1. Introduce the space H1/2 of functions, f , on ∂D with 1

2 derivative and
prove that if log w ∈ H1/2, then b, c ∈ H1/2 and the map log w → b (or c) is
continuous in H1/2-norm.
Step 2. Prove that if f ∈ H1/2, H(f) is Hilbert-Schmidt and f �→ H(f) is
continuous. Because of this, it will suffice to prove (6.2.2) for a dense set of log w
in H1/2; we will take those w’s with L = log w obeying

∞∑
k=0

|L̂k| < ∞ (6.2.32)

Step 3. Let H+ = P+H = �2(0, 1, 2, . . . ). Prove that if (6.2.15) and (6.2.32) hold,
then

detQnH+(Qn(T (b)T (c))−1Qn) =
detPnH+(1 − RnH(b)H(c̃)Rn)

detH+(1 − H(b)H(c̃))
(6.2.33)

This will essentially be Jacobi’s relation (3.1.5).
Step 4. Prove that if (6.2.32) holds, then

det(Qn(T (b)T (c))−1Qn) = e−(n+1)L̂0Dn+1

(
w

dθ

2π

)
(6.2.34)

Step 5. Prove that if (6.2.32) holds (and then, by a limiting argument whenever
(6.2.29) holds), one has Widom’s formula,

det(1 − H(b)H(c̃)) = exp
(
−

∞∑
k=1

k|L̂j |2
)

(6.2.35)

Definition. H1/2(∂D) is the Sobolev space of functions, f , on L2(∂D, dθ
2π ) with

∞∑
k=−∞

|k| |f̂k|2 < ∞ (6.2.36)

We define an inner product on H1/2 by

〈f, g〉1/2 =
∞∑

k=−∞
(1 + |k|) ¯̂

fkĝk (6.2.37)
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and norm
‖f‖1/2 =

√
〈f, f〉1/2 (6.2.38)

H
1/2
R

will denote the set of real-valued functions in H1/2.

Definition. For f ∈ H
1/2
R

,

I(f) =
∑
k>0

f̂keikθ −
∑
k<0

f̂keikθ (6.2.39)

and
B(f) = exp(I(f)) (6.2.40)

Remark. −iI(f) is the conjugate function to f . It will also enter in Section 6.4.

Proposition 6.2.5. If w ∈ L2(∂D, dθ
2π ) is positive with log w ∈ H1/2, then

B(log w) =
Dw

D̄w
(6.2.41)

Remark. This, of course, says b(w) = B(log w) and c(w) = B(log w) in terms
of the functions of (6.2.27).

Proof. By definition of D and (1.3.18), if log w ≡ L,

D(z) = exp
(

1
2 L̂0 +

∞∑
k=1

L̂kzk

)
so

D(eiθ) = exp
(

1
2 L̂0 +

∞∑
k=1

L̂keikθ

)

with the sum intended in L2(∂D, dθ
2π ) sense. Thus, since L−k = L̄k,

D

D̄
= exp

( ∞∑
k=1

L̂keikθ −
∞∑

k=1

L̂−ke−ikθ

)
= B(log w) �

We are now ready for the critical continuity result that implements Step 1.

Proposition 6.2.6 (Deift-Killip). The map B on H
1/2
R

has range in H1/2 and
B is continuous in H1/2 norm.

Proof. Clearly, I, which multiplies Fourier coefficients by +1, −1, or 0, is
a contraction from H

1/2
R

to H1/2. Moreover, I(f) is pure imaginary since f real
implies f̂−k = ¯̂

fk. Thus, B(f) ∈ L∞ and, by the fact that ix → eix is Lipschitz
from iR to C, Proposition 6.1.11 implies that B(f) ∈ H1/2.

To check continuity, suppose fn → f in H
1/2
R

. Note first that I(·) is continuous
in L2, so since exp(·) is uniformly Lipschitz on iR, ‖B(f)−B(fn)‖ → 0, and so we
need only focus on the piece of the norm given by Devinatz’s formula. Write

Fn = eI(fn) − eI(f)

= (eI(fn−f) − 1)eI(f)

= GnH
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with H = eI(f) and Gn = (eI(fn−f) − 1). Thus∣∣∣∣Fn(θ) − Fn(ϕ)
eiθ − eiϕ

∣∣∣∣ ≤
∣∣∣∣H(θ) − H(ϕ)

eiθ − eiϕ

∣∣∣∣ |Gn(ϕ)| +
∣∣∣∣Gn(θ) − Gn(ϕ)

eiθ − eiϕ

∣∣∣∣
since |H(θ)| = 1. Since |eix − eiy| ≤ |x − y|, the second term integrated over θ and
ϕ is bounded by ‖fn − f‖1/2 by Devinatz’s formula (6.1.58). The first term is a
product of a function in L2(∂D

2, dθ dϕ
(2π)2 ) and a sequence uniformly bounded in L∞

and converging in L2 and so, by the lemma below, it goes to zero in L2(∂D
2, dθ dϕ

(2π)2 ).
Thus, by Devinatz’s formula, ‖Fn‖1/2 → 0. �

Lemma 6.2.7. If h ∈ L2(M,dµ), fn ∈ L∞ ∩ L2(M), and supn ‖fn‖∞ < ∞,
‖fn − f‖2 → 0, then ‖h(fn − f)‖2 → 0.

Proof. Write h as h1 + h2 with h1 ∈ L∞. Then

‖h(fn − f)‖2 ≤ ‖h1‖∞‖fn − f‖2 + 2‖h2‖2 sup
n

‖fn‖∞
For each h1, the first term goes to zero so

lim sup ‖h(fn − f)‖2 ≤ 2‖h2‖2 sup
n

‖fn‖∞
Since we can take ‖h2‖2 arbitrarily small, the lim sup is 0. �

That completes Step 1. For Step 2, notice that

Theorem 6.2.8. If f ∈ H1/2, then H(f) ∈ I2, the Hilbert-Schmidt operators,
and

‖H(f)‖I2 ≤ ‖f‖1/2 (6.2.42)

Proof. H(f) has in its matrix representation f̂1 once, f̂2 twice, . . . , so

‖H(f)‖2
I2

=
∞∑

k=1

k|f̂k|2 ≤ ‖f‖2
1/2 (6.2.43)

�

For Step 3:

Proposition 6.2.9. Let K be a trace class operator on a separable Hilbert
space, H, so that (1 − K) is invertible. Let P be an orthonormal projection and
Q = 1 − P . Then

detPH(P (1 − K)−1P ) =
detQH(Q(1 − K)Q)

det(1 − K)
(6.2.44)

Proof. Pick a basis {ϕj}∞j=1 with each ϕj ∈ P or ϕj ∈ Q. Let Rn be the
projection onto the span of {ϕj}n

j=1. Since RnKRn is finite-dimensional, Jacobi’s
identity on minors (see Proposition 3.1.6) says that

detPRnH(PRn(1 − K)−1RnP ) =
detQRnH(QRn(1 − K)RnQ)

detRnH(Pn(1 − K)Rn)
(6.2.45)

By (1.4.66) and (1.4.69), if A ∈ I1, detRnH(Rn(1 − A)Rn) → det(1 − A) since

detRnH(Rn(1 − A)Rn) = detH(1 − RnARn)

so (6.2.44) follows from (6.2.45) by taking limits. �
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Proposition 6.2.10. If (6.2.29) and (6.2.32) hold, then

detQnH+(Qn(T (b)T (c))−1Qn) =
detRnH+(1 − RnH(b)H(c̃)Rn)

detH+(1 − H(b)H(c̃))
(6.2.46)

Remark. Once we have (6.2.52) below, this result extends to cases when only
(6.2.29) holds. For (6.2.52) and (6.2.53) below imply that for f ∈ H1/2, T (b)T (c)
is invertible and the inverse is continuous in H1/2, which implies that both sides of
(6.2.46) are continuous.

Proof. Let K = H(b)H(c̃) so, by (6.2.22),

1 − K = T (b)T (c)

By (6.2.32), b = x+x− with x+ ∈ H∞ and x− ∈ H∞ both invertible in H∞ and
H∞, respectively. Thus, by Corollary 6.2.4, T (b)T (c) is invertible, and so, (6.2.44)
holds, which is just (6.2.46), �

That gives us Step 3. To get Step 4, note that

Proposition 6.2.11. If (6.2.32) holds, then

det(Qn(T (b)T (c))−1Qn) = e−(n+1)L̂0Dn

(
w

dθ

2π

)
(6.2.47)

Remark. Again, once we have (6.2.52) below, continuity will imply this if
(6.2.29) holds even if (6.2.32) does not.

Proof. We have that

(T (b)T (c))−1 = T (c)−1T (b)−1

= T (D−1)T (D̄)T (D)T (D̄−1) (6.2.48)

= T (D−1)T (w)T (D̄−1) (6.2.49)

where (6.2.48) follows from (6.2.25) and (6.2.49) from Corollary 6.2.3 and D ∈ H∞

(when (6.2.32) holds).
Since D−1 ∈ H∞, QnT (D−1)Rn = 0, and similarly, RnT (D̄−1)Qn = 0. Thus

QnT (D−1)T (w)T (D̄−1)Qn = QnT (D−1)QnQnT (w)QnPnT (D̄−1)Qn

So, by (6.2.49),

det(Qn(T (b)T (c))−1Qn)

= det(Qn(T (D−1)Qn) det(QnT (w)Qn) det(QnT (D̄−1)Qn)
(6.2.50)

By definition, det(QnT (w)Qn) = Dn(w dθ
2π ). Since T (D−1) is upper triangular,

det(QnT (D−1)Qn) = [D−1(0)]n+1 = exp(− 1
2 (n + 1)L̂0) by Szegő’s theorem (The-

orem 2.7.14). Similarly, det(QnT (D̄−1)Qn) = exp(− 1
2 (n + 1)L̂0). Thus (6.2.50)

implies (6.2.47). �
To prove Step 5, we need a theorem, whose proof we defer:

Theorem 6.2.12 (Helton-Howe Theorem). Let A,B be bounded operators on
a Hilbert space H so that [A,B] is trace class. Then eAeBe−Ae−B − 1 is trace class
and

det(eAeBe−Ae−B) = exp(Tr[A,B]) (6.2.51)

Given this, we have
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Theorem 6.2.13 (Widom’s Formula). If (6.2.29) holds, then

det(1 − H(b)H(c̃)) = exp
(
−

∞∑
j=1

j|L̂j |2
)

(6.2.52)

Proof. Suppose first w obeys (6.2.29) and (6.2.32). By (6.2.22) and (6.2.48),

1 − H(b)H(c̃) = T (b)T (c) (6.2.53)

= T (D̄)T (D)−1T (D̄)−1T (D) (6.2.54)

Letting L+ = 1
2 L̂0 +

∑∞
k=1 L̂keikθ and L− = L̄+ so D = exp(L+), and using

Corollary 6.2.3,
T (D) = T (eL+) = eT (L+)

so (6.2.54) becomes

det(1 − H(b)H(c̃)) = det(eT (L−)e−T (L+)e−T (L−)eT (L+))

= exp(−Tr[T (L−), T (L+)]) (6.2.55)

by the Helton-Howe formula if we prove that [T (L−), T (L+)] is trace class.
By Corollary 6.2.3, T (L−)T (L+) = T (L+L−), and then, by (6.2.22),

[T (L−), T (L+)] = T (L+L−) − T (L+)T (L−)

= H(L+)H(L̄−)

= H(L+)H(L+)∗ (6.2.56)

By Proposition 6.2.6, H(L+) is Hilbert-Schmidt so, by (6.2.56), [T (L−), T (L+)]
is trace class and, by (6.2.43),

Tr(H(L+)H(L−)∗) = ‖H(L+)‖2
2

=
∞∑

j=1

j|L̂j |2 (6.2.57)

By (6.2.55), we have (6.2.52) if (6.2.32) holds. Since Theorem 6.2.2 says that
w �→ b, c is continuous in H1/2, w �→ H(b)H(c̃) is continuous in trace norm, and
so, w �→ det(1−H(b)H(c̃)) is continuous in H1/2-norm. Obviously, the left side of
(6.2.52) is continuous. Thus (6.2.52) holds in H1/2. �

We are now ready for the main result of this section:

Theorem 6.2.14 (Borodin-Okounkov Formula). Let dµ be a nontrivial proba-
bility measure on ∂D. Suppose

∞∑
k=1

k|L̂k|2 < ∞ (6.2.58)

Then
Dn+1(w dθ

2π )

exp((n + 1)L̂0 +
∑∞

k=1 k|L̂k|2)
= detRnH(1 − RnH(b)H(c̃)Rn) (6.2.59)

Proof. If w also obeys
∑|L̂k| < ∞, then this follows (6.2.47) and (6.2.52).

The left side is trivially continuous in w in ‖ ·‖1/2-norm since Dn+1(·) only depends
on finitely many Fourier coefficients. By Proposition 6.2.6 and Theorem 6.2.9, the
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right side is continuous. Since the w’s obeying
∑|L̂k| < ∞ are dense in H1/2, the

result is proven. �

Theorem 6.2.15 (Second Proof of Ibragimov’s Theorem). Let dµ = w dθ
2π be a

nontrivial probability measure. If w obeys
∑∞

k=1 k|L̂k|2 < ∞, then

lim
n→∞ e−(n+1)L̂0Dn(dµ) = exp

( ∞∑
k=1

k|L̂k|2
)

(6.2.60)

Proof. This is immediate from (6.2.59) since H(b)H(c̃) is trace class, so
RnH(b)H(c̃)Rn → 0 in trace norm and thus, det(1 − RnH(b)H(c̃)Rn) → 1 by
(1.4.66). �

The proof shows that

Theorem 6.2.16. Under the hypothesis of Theorem 6.2.15,

|e−(n+1)L̂0−
∑∞

1 k|L̂k|2Dn(dµ) − 1| ≤
∞∑

k=1

k|L̂k+n|2 exp
( ∞∑

k=1

k|L̂k+n|2
)

(6.2.61)

and
|e−(n+1)L̂0−

∑∞
1 k|L̂k|2Dn(dµ) − 1 − An| ≤ 1

2 A2
neAn (6.2.62)

where An =
∑∞

k=1 k|L̂k+n|2.
Remark. This shows once again (see Theorem 2.1.3) that if w is C∞ and w > 0,

then the error in the strong Szegő asymptotics is O(n−�) for all �.

Proof. By (1.4.64) and (1.4.63),

|det(1 + A) − 1| ≤ e‖A‖1 − 1 ≤ ‖A‖1 e‖A‖1 (6.2.63)

and

|det(1 + A) − 1 − Tr(A)| ≤ e‖A1‖1 − 1 − ‖A1‖1

≤ 1
2 ‖A‖2

1 e‖A‖1 (6.2.64)

where we used Taylor’s theorem with remainder. If we note that RnH(b)H(c̃)Rn ≥
0 and Tr(RnH(b)H(c̃)Rn) = ‖H(c̃)Rn‖2 =

∑∞
k=1 k|L̂k+n| since H(c̃)Rn is a Hankel

matrix based on the sequence L̂n+1, L̂n+2, . . . , then (6.2.61) is (6.2.63) and (6.2.62)
is (6.2.64). �

Finally, we turn to a proof of the Helton-Howe theorem:

Proof of Theorem 6.2.12. If [A,B] is trace class, by a simple induction,
[An, B] = An−1[A,B] + [An−1, B]A is trace class and

‖[An, B]‖1 ≤ n‖A‖n−1‖[A,B]‖1

By a second induction,

‖[An, Bm]‖1 ≤ nm‖A‖n−1‖B‖m−1‖[A,B]‖1

Thus, by summing Taylor series, [eA, eB ] is trace class and

‖[eA, eB ]‖1 ≤ ‖[A,B]‖1 e‖A‖+‖B‖

It follows that eAeBe−Ae−B − 1 = [eA, eB ]e−Ae−B is trace class and

‖eAeBe−Ae−B − 1‖1 ≤ ‖[A,B]‖1 e2(‖A‖+‖B‖)
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Define
F (s) = esAesBe−sAe−sB (6.2.65)

and
X(s) = 1 − F (s) (6.2.66)

For s small, X(s) is small in ‖ · ‖1, so

log(F (s)) = −
∞∑

n=1

X(s)n

n
(6.2.67)

converges in ‖ · ‖1.
By Lidskii’s theorem (see (1.4.72) and (1.4.73)),

log(det(F (s))) = Tr(log F (s)) (6.2.68)

so, by (6.2.67),

d

ds
log(det(F (s))) = −

∞∑
n=1

Tr
( n−1∑

j=0

X(s)jX ′(s)X(s)n−1−j

)/
n

= Tr(F ′(s)F (s)−1) (6.2.69)

Since F (s) is clearly invertible for all s ∈ C, det(F (s)) is nonvanishing, so both
sides of (6.2.69) are entire in s, and thus their equality holds for all s.

Next, note that
F ′(s) = esAesBC(s)e−sAe−sB (6.2.70)

where
C(s) = B + e−sBAesB − A − e−sABesA (6.2.71)

If Y (s) = esRQe−sR, with Q,R bounded operators, then Y (s) is an entire
function of s and

Y (n)(s)
∣∣∣
s=0

= (AdR)n(Q) (6.2.72)

where
AdR(Q) = [R,Q] (6.2.73)

so

C(s) =
∞∑

n=1

(−s)n

n!
[Adn

B(A) − Adn
A(B)] (6.2.74)

Thus C(s) is trace class, so by (1.4.60),

Tr(F ′(s)F (s)−1) = Tr(esAesBC(s)e−sAe−sBesBesAe−sBe−sA)

= Tr(C(s))

= 2s[A,B] (6.2.75)

where we used (1.4.60) again to conclude Tr(Adn
B(A)) = 0 if n ≥ 2.

By (6.2.69) and (6.2.75), d
ds log(det(F (s))) = 2s[A,B] so

det(F (s)) = exp(s2[A,B]) (6.2.76)

which is (6.2.51). �
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Remarks and Historical Notes. The Borodin-Okounkov formula was proven
by them in [135]. They were motivated by a question of Deift and Its. Alternate
proofs are due to Böttcher [138, 139] and to Basor-Widom [90]. Our proof follows
that of Böttcher [139] with one important technical condition; his proof is only for
L∞ ∩ H1/2, not all of H1/2 (see below).

While the paper of Borodin-Okounkov evoked great interest and has become a
standard name, the result was proven already many years earlier by Geronimo-Case
[395]. While Geronimo-Case do not mention Hankel operators by name and are
not explicit about what conditions are needed, their kernel G (their eqn. (V.11)) is
a product of Hankel operators. What we call b, they call S, the S-matrix in their
way of discussing OPUC. As we will see in Section 10.7, S = D̄/D (see the last
sentence in that section!), so their formula is equivalent to the Borodin-Okounkov
formula in the form we write it. It is unfortunate that this aspect of [395] seems
to have escaped the notice of the experts in the field.

Borodin-Okounkov have an explicit trace class integral operator on L2(∂D)
where we use H(b̃)H(c). That their operator can be written in this form is an
important observation of Basor-Widom [90].

The use of Hankel operators to study Toeplitz operators goes back to Gohberg-
Krein [439]. This point of view, exploiting Theorem 6.2.2 and an analog for Tn, was
developed for the study of Toeplitz determinants by Widom [1099]. In particular,
that paper has a variant of what we have called Widom’s formula (6.2.52): In place
of det(1−H(b̃)H(c)) = det(T (b)T (c)), he has det(T (w)T (w−1)), which is the same
if w is nice enough. It should be emphasized that Widom [1099] was the first
paper to use operator methods on the study of the strong Szegő theorem, and the
extensive later works on that subject all begin from his work.

The Helton-Howe formula appeared first in Helton-Howe [501]. They remarked
their result should be connected to the strong Szegő theorem and this motivated
Widom. Recently, Ehrhardt [329] proved a generalization of the Helton-Howe
formula that if [A,B] is trace class, then

det eAeBe−(A+B) = exp(1
2 Tr([A,B]))

It is easy to prove this formula using either the method of proof we give for
the Helton-Howe formula (close to the proof in [329]) or the original proof
using the Baker-Campbell-Hausdorff (BCH) formula. Since eAeBe−Ae−B =
(eAeBe−(A+B))(eBeAe−(A+B))−1, Ehrhardt’s formula implies the Helton-Howe for-
mula.

Helton-Howe use the BCH formula which says eAeB = eC with C = A + B +
1
2 [A,B] + · · · where · · · involves higher-order commutators [554]. Rather than
rely on this result, whose first-principle proof is lengthy, we present the derivative
argument — new here — which is motivated by one proof of the BCH formula as
discussed in Magnus [730], Feynman [349], Oteo-Ros [834], and Dragt-Finn [306].
This proof has some overlap with Ehrhardt [329].

Prior discussions of the Borodin-Okounkov formula made the stronger assump-
tion that log w ∈ L∞ ∩ H1/2. This space is called the Krein algebra since Krein
[659] discovered this space is an algebra. That it is indeed an algebra is a simple
consequence of Devinatz’s formula (6.1.58). It can also be proven (Krein’s original
proof) using the analog of (6.2.22),

H(fg) = T (f)H(g) + H(f)T (ḡ)
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The idea we use to avoid log w ∈ L∞ that, by Devinatz’s formula, b, c ∈ H1/2,
is due to Killip (unpublished). The continuity result and that it should allow using
the Borodin-Okounkov formula to prove the full Ibragimov theorem is a subsequent
observation of Deift (unpublished).

The converse of Theorem 6.2.1 for T is easy. If Vn : �2(Z) → �2(Z) by (Vnu)j =
uj−n and uj = 0 if j /∈ [−n, n], then

Vnc(a)u = t(a)Vnu

so if ‖t(a)u‖ ≤ D‖u‖ for all u, then ‖c(a)u‖ ≤ D‖u‖ for all u, and thus, t(a) is
bounded if and only if c(a) is bounded and the norms are the same.

On the other hand, if c(a) is bounded with ‖c(a)u‖ ≤ D‖u‖, then first c(a)δ0 ≡
a, so a ∈ �2. Thus c(a)u = (fû)∨ for f in �2. If |{θ | |f | > D}| > 0, and if
û = χ{θ||f |>0}f/|f |, then ‖c(a)u‖ > D‖u‖. We conclude that if ‖c(a)u‖ ≤ D‖u‖,
then c(a) = C(f) for f ∈ L∞ with ‖f‖∞ ≤ D.

The modern theory of Hankel operators started with the following result of
Nehari [803]:

Theorem 6.2.17 (Nehari’s Criterion). Let {an}∞n=1 be a sequence so that h(a)
is bounded from �2(Z+) to �2(Z+), that is,

‖h(a)u‖2 ≤ D‖u‖2 (6.2.77)

Then there exists f ∈ L∞(∂D, dθ
2π ), ‖f‖∞ = D so that (6.2.5) holds for j ≥ 1.

Conversely, if f ∈ L∞ and a is given by (6.2.5), then h(a) is bounded and (6.2.8)
holds.

Proof. We proved the converse statement in (6.2.8), so it suffices to show
(6.2.77) implies the existence of f ∈ L∞ with H(f) = h(a) and with ‖f‖∞ ≤ D.

Since an = 〈δn, h(a)δ1〉, ‖a‖∞ ≤ D. For 0 < r < 1, let (a(r))n = anrn so
a(r) ∈ �1 and thus, there is f (r) ∈ L∞ with (6.2.5) relating f (r) and a(r). Let
g ∈ H1 and write g = k�, with k, � ∈ H2 and ‖k‖2 = ‖�‖2 = ‖g‖1. Define L(r) on
H1 by

L(r)(g) =
∑
m≥0

a(r)
m ĝ(m)

=
∑
m≥0

a(r)
m

m∑
j=0

k̂(j)�̂(m − j)

= 〈Mrk̂, h(a)Mr �̂〉
where Mr : �2 → �2 by (Mrb)n = rnbn. Thus, L(r)(g) is well-defined and obeys

|L(r)(g)| ≤ D‖Mrk̂‖�2‖Mr �̂‖�2

≤ D‖k̂‖�2‖�̂‖�2

= D‖k‖2‖�‖2 = D‖g‖1

Thus if g is a polynomial and we define

L(g) =
∑

anĝ(m)

then
|L(g)| ≤ D‖g‖1 (6.2.78)
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By the Hahn-Banach theorem, L extends to a continuous function on L1 with the
same norm, that is, there is f ∈ L∞ with ‖f‖∞ ≤ D and

∫
f(θ)e−ikθ dθ

2π = ak. �

Remark. We use the extra complication of a(r) because even if f is a polynomial,
k and � may not be.

Shortly after Nehari’s paper, Hartman [493] proved a nice complement to Ne-
hari’s theorem, namely, h(a) is compact if and only if there is a continuous function
f with f̂n = an. For a comprehensive study of Hankel operators, see Peller [863].

For finite invertible matrices X,Y, we have det(XY X−1Y −1) = 1 so the Helton-
Howe theorem is a result specific to infinite dimensions (of course, related to the
fact that Tr([A,B]) = 0 for finite matrices). Related to this, as noted above, is
Widom’s formula that

det(T (w)T (w−1)) = exp
( ∞∑

k=1

k|L̂k|2
)

(6.2.79)

to be compared with the consequence of the strong Szegő theorem that

lim
n→∞ det(Tn(w)Tn(w−1)) = exp

(
2

∞∑
k=1

k|L̂k|2
)

(6.2.80)

The extra 2 in (6.2.80) is at first surprising but, in essence, the strong Szegő
term, exp(

∑∞
k=1 k|L̂k|2), is an edge effect. T (w) is semi-infinite and has only one

edge while, for any n, Tn has two edges.

6.3. Representations of U(n) and the Bump-Diaconis Proof

In this section and Section 6.5, we prove the strong Szegő theorem without the
weakest possible hypotheses used in the last two sections and in Section 6.4. They
are here because they provide interesting insights into where the terms come from.
The starting point in this section is (1.5.89) and (1.5.88), which can be combined
to say that if dµ = w(θ) dθ

2π (i.e., dµs = 0), then

Dn

(
w

dθ

2π

)
=

∫
U(n+1)

eFn+1(g) dg (6.3.1)

where dg is Haar measure on U(n+1), the group of (n+1)×(n+1) unitary matrices
and

Fn+1(g) =
n∑

j=0

log w(θj(g)) (6.3.2)

with {eiθj(g)} the eigenvalues of g.
Let

L(θ) ≡ log w(θ) =
∞∑

k=−∞
L̂keikθ (6.3.3)

and we suppose that
∞∑

k=−∞
|L̂k| < ∞ (6.3.4)

Since
n∑

j=0

eikθj(g) = Tr(gk) (6.3.5)


