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I prefer to state them as

lim
n→∞ |αn| = 0 ⇔ lim

n→∞ bn,� = 0 for each � = 1, 2, . . .

|Ω| = 2π ⇔ lim
n→∞ bn,� = 0 uniformly in � = 1, 2, . . .

Rakhmanov’s theorem has been extended to general Jacobi matrices by Denisov
[272]; see Section 13.4 for the proof and further history.

9.2. Khrushchev’s Proof of Rakhmanov’s Theorem

In this section and the next, we discuss an approach to a number of issues
connected with asymptotics of ϕn and properties of dµ that rely on a study of the
Schur algorithm associated to dµ (see Section 1.3). The key will be an analysis of
the Schur iterates, fn(z, dµ), given by iterating (1.3.34)/(1.3.35), that is,

αn(dµ) = fn(0, dµ) (9.2.1)

fn+1(z, dµ) =
1
z

fn(z, dµ) − αn(dµ)
1 − αn(dµ) fn(z, dµ)

(9.2.2)

with f0(z, dµ) = f(z, dµ), the Schur function given by

1 + zf(z)
1 − zf(z)

=
∫

eiθ + z

eiθ − z
dµ(θ) (9.2.3)

In (9.2.1), we use Geronimus’ theorem that the Schur parameters and Verblunsky
coefficients are the same (see Theorems 3.1.4, 3.2.7, 3.2.10, 3.4.7, and 4.5.9).

Khrushchev’s approach to Rakhmanov’s theorem depends on

Theorem 9.2.1. Let dµ = w(θ) dθ
2π + dµs and Ω = {θ | w(θ) > 0}. Then

|∂D\Ω| = 0 if and only if

lim
n→∞

∫ 2π

0

|fn(eiθ, dµ)|2 dθ

2π
= 0 (9.2.4)

Because fn(0) = αn, we have

αn =
∫ 2π

0

fn(eiθ, dµ)
dθ

2π
(9.2.5)

so

|αn| ≤
(∫ 2π

0

|fn(eiθ, dµ)|2 dθ

2π

)1/2

(9.2.6)

and thus (9.2.4) implies lim |αn| = 0, providing a proof of Rakhmanov’s theorem.
As in the last section, there are quantitative versions of the relation. We will

establish

lim sup
∫
|fn(eiθ, dµ)|2 dθ

2π
≤ 2

(
1 − |Ω|

2π

)1/2

(9.2.7)

while for all n, ∫
|fneiθ, dµ)|2 dθ

2π
≥ 1 − |Ω|

2π
(9.2.8)

In particular, (9.2.7) and (9.2.6) imply that

lim sup
n

|αn| ≤
√

2
(

1 − |Ω|
2π

)1/4

(9.2.9)
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which is better than (9.1.2) when |Ω| is small but much worse when |Ω|/2π is near
1; this bound is O((2π − |Ω|)1/4) and (9.1.2) is O((2π − |Ω|)1/2).

We begin with a proof of (9.2.8):

Theorem 9.2.2. For any n,

{θ | |fn(eiθ, dµ)| < 1} = Ω (9.2.10)

In particular, on ∂D\Ω, |fn(eiθ, dµ)| = 1 and thus, (9.2.8) holds.

Proof. By (9.2.3) and the fact that w �→ (1 + w)/(1 − w) maps D to {z |
Re z > 0}, we see that

{θ | |f(eiθ, dµ)| < 1} = {θ | w(θ) > 0} (9.2.11)

If µ(n) is the measure with αk(dµ(n)) = αk+n(dµ) and dµ(n) = w(n)(θ) dθ
2π + dµ

(n)
s ,

then (9.2.11) says that

{θ | |fn(eiθ, dµ)| < 1} = {θ | w(n)(θ) > 0} (9.2.12)

Theorem 3.4.4 implies

{θ | w(θ) > 0} = {θ | w(n)(θ) > 0} (9.2.13)

(9.2.12) and (9.2.13) imply (9.2.10).
This in turn implies |fn| = 1 on ∂D\Ω so∫ 2π

0

|fn(eiθ)|2 dθ

2π
≥

∫
|∂D\Ω|

|fn(eiθ)|2 dθ

2π

=
1
2π

|∂D\Ω| = 1 − |Ω|
2π

�

A key role in what follows is played by the functions, called the inverse Schur
iterates,

bn(z, dµ) =
ϕn(z; dµ)
ϕ∗

n(z; dµ)
(9.2.14)

Proposition 9.2.3. (i) bn is analytic in a neighborhood of D̄ and meromor-
phic in C.

(ii) If {zj}n
j=1 are the zeros of ϕn, then bn is the finite Blaschke product

bn(z) =
n∏

j=1

(
z − zj

1 − z̄jz

)
(9.2.15)

(iii)

bn+1 =
zbn(z) − ᾱn

1 − αnzbn(z)
(9.2.16)

(iv) The Schur parameters of bn(z) are (−ᾱn−1,−ᾱn−2, . . . ,−ᾱ0, 1).

Proof. (i) is immediate, given that ϕ∗
n is nonvanishing in D̄ (Theorem 1.7.1).

(ii) Since ϕn(z) = κn

∏n
j=1(z − zj), we have

ϕ∗
n(z) = zn ϕn(1/z̄) = κn

n∏
j=1

(1 − z̄jz)

and (9.2.15) follows from (9.2.14).
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(iii) This is immediate from the Szegő recursion; to make the calculation sim-
pler, note that bn = Φn/Φ∗

n so

bn+1 =
zΦn − ᾱnΦ∗

n

Φ∗
n − αnzΦn

and (9.2.16) follows dividing numerator and denominator by Φ∗
n.

(iv) (9.2.16) says that bn(0) = −ᾱn−1 and that the first Schur iterate of bn is
bn−1 (by (1.3.39)). The result follows by induction until we reach b0(z) ≡ 1. �

The key to much of Khrushchev’s analysis is

Theorem 9.2.4 (Khrushchev’s Formula). Let dµ = w dθ
2π + dµs be a nontrivial

probability measure on ∂D. Then
(i) For a.e. eiθ ∈ ∂D,

|ϕn(eiθ)|2w(θ) =
1 − |fn(eiθ)|2

|1 − eiθbn(eiθ)fn(eiθ)|2 (9.2.17)

(ii) We have that for z ∈ D,∫
eiθ + z

eiθ − z
|ϕn(eiθ)|2 dµ(θ) =

1 + zfn(z)bn(z)
1 − zfn(z)bn(z)

(9.2.18)

Proof. (i) By (1.3.32),

w(θ) =
1 − |f(eiθ)|2

|1 − eiθf(eiθ)|2 (9.2.19)

and, by (1.3.79),

f(z) =
An−1(z) + zB∗

n−1(z)fn(z)
Bn−1(z) + zA∗

n−1(z)fn(z)
(9.2.20)

If ωn =
∏n

j=0(1 − |αj |2), then (1.3.83) says that

|Bn(eiθ)|2 − |An(eiθ)|2 = ωn (9.2.21)

Straightforward arithmetic from (9.2.20) using (9.2.21) shows that

1 − |f(eiθ)|2 =
(1 − |fn(eiθ)|2)ωn−1

|Bn−1 + eiθA∗
n−1fn|2 (9.2.22)

and using Theorem 3.2.10 that

|1 − eiθf(eiθ)|2 =
|Φ∗

n(eiθ) − eiθΦn(eiθ)f(eiθ)|2
|Bn−1 + eiθA∗

n−1fn|2 (9.2.23)

Since ϕn = ω
−1/2
n−1 Φn, (9.2.19) implies

w(θ) =
(1 − |fn|2)

|ϕ∗
n − eiθϕnfn|2

=
1 − |fn|2

|ϕn|2|1 − eiθbnfn|2
since |ϕ∗

n| = |ϕn| on ∂D. This is (9.2.17).
(ii) We have that

Re
(

1 + zbnfn

1 − zbnfn

)
=

1 − |zbnfn|2
|1 − zbnfn|2 (9.2.24)
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so if Fn is the left side of (9.2.18) and Rn is the right side, we have, by (9.2.17),
that for a.e. θ,

Re Fn(eiθ) = Re Rn(eiθ) (9.2.25)

Suppose � ≥ 1 and dµ� = dθ
2π |ϕ�(eiθ)|−2 is a Bernstein-Szegő approximation for

dµ. In that case, Fn(z, dµ�) is analytic in a neighborhood of D̄, and f(z, dµ�), and
so fn(z, dµ�) are analytic in a neighborhood of D̄ with |fn(eiθ, dµ�)| < 1 for all θ.
Thus both sides of (9.2.18) are analytic in a neighborhood of D̄, so (9.2.25) implies
the two sides agree up to an imaginary constant. Since both sides are 1 at z = 0,
this constant is zero. Thus (9.2.18) holds for µ�.

Since
ϕn(z; dµ�) = ϕn(z; dµ) (9.2.26)

if � > n, for z ∈ D, the left side of (9.2.18) converges to the result
for dµ as � → ∞ by the Bernstein-Szegő approximation theorem (Theo-
rem 1.7.8). By (9.2.26), bn(z, dµ�) = bn(z, dµ) if � ≥ n. Since fn(z, dµ�) has
Schur parameters (αn, αn+1, . . . , α�, 0, . . . ) and fn(z, dµ) has Schur parameters
(αn, αn+1, . . . , α�, α�+1, . . . ), for z ∈ D, fn(z, dµ�) → fn(z, dµ) by Theorem 1.5.6.
Thus for z ∈ D, the right side of (9.2.18) converges. It follows that (9.2.18) holds
for dµ. �

Remarks. 1. (9.2.18) can be restated as

f(z, |ϕn|2dµ) = fn(z, dµ)bn(z, dµ) (9.2.27)

2. (4.4.7) provides another formula for the left side of (9.2.18). Reconciling the
two provides an alternate proof of (9.2.18). Define uk and u∗

k by

uk = ψk + F (z)ϕk u∗
k = −ψ∗

k + F (z)ϕ∗
k (9.2.28)

Thus
u∗

0

u0
=

−1 + F

1 + F
= zf (9.2.29)

by (1.3.2). By Theorem 3.2.11, Ξk =
(
uk

u∗
k

)
is the unique solution of (3.2.7) which is

in �2. It follows that(
u�(z;αk, αk+1, . . . )
u∗

� (z;αk, αk+1, . . . )

)
= c

(
uk+�(z;α0, α1, . . . )
u∗

k+�(z;α0, α1, . . . )

)

for some c. In particular, taking � = 0, by (9.2.29),

u∗
k

uk
= zfk (9.2.30)

Next, note that by (9.2.28) and (3.2.21),

ϕ∗
kuk − ϕku∗

k = 2zk (9.2.31)

Since
eiθ + z

eiθ − z
=

(
2z

eiθ − z
+ 1

)
we have that

LHS of (9.2.18) = 2z((LHS of (4.4.7))) + 1

=
2ϕku∗

k + 2zk

2zk
(by (4.4.7))
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=
ϕku∗

k + ϕ∗
kuk

ϕ∗
kuk − ϕku∗

k

=
1 + ϕk

ϕ∗
k

u∗
k

uk

1 − ϕk

ϕ∗
k

u∗
k

uk

=
1 + zbkfk

1 − zbkfk

by (9.2.14), (9.2.30), and (9.2.31). Thus (4.4.7) is equivalent to (9.2.18); its proof
provides another proof of Khrushchev’s formula.

3. For a third proof of (9.2.18) using finite rank perturbations of unitaries, see
Theorem 4.5.10.

Proposition 9.2.5. Let

gn(θ, dµ) =
2|ϕn(eiθ, dµ)|2w(θ)

1 + |ϕn(eiθ, dµ)|2w(θ)
(9.2.32)

Then ∫ 2π

0

|fn(eiθ)|2 dθ

2π
≤ 2

∫ 2π

0

|1 − gn(θ)| dθ

2π
(9.2.33)

≤ 2
(∫ 2π

0

|1 − gn(θ)|2 dθ

2π

)1/2

(9.2.34)

Proof. Since for z = eiθ ∈ ∂D,

|1 − zbnfn|2 = 1 + |fn|2 − 2Re(zbnfn)

(since |bn| = 1 on ∂D), we have, by (9.2.17), that

1 − |fn|2 = [1 + |fn|2 − 2Re(zbnfn)] |ϕn|2w
Solving for |fn|2,

|fn|2 =
1 − |ϕn|2w
1 + |ϕn|2w + Re(zbnfn)

[
1 +

|ϕn|2w − 1
1 + w|ϕn|2

]
(9.2.35)

Since hn ≡ zbnfn is analytic in D and bounded there, the Cauchy formula for
H∞ functions implies that

1
2π

∫ 2π

0

Re(zbnfn)
∣∣∣∣
z=eiθ

dθ

2π
= Re hn(0) = 0

so using |Re(zbnfn)| ≤ 1,

1
2π

∫ 2π

0

|fn(eiθ)|2 dθ

2π
≤ 2

∫ |1 − |ϕn|2w|
|1 + |ϕn|2w|

dθ

2π

= 2
∫

|1 − gn(eiθ)| dθ

2π

(9.2.34) then follows from the Schwarz inequality. �

Proposition 9.2.6. (i)∫ 2π

0

|gn(eiθ)|2 dθ

2π
≤ 1 −

∫
|ϕn(eiθ)|2 dµs(θ) (9.2.36)

(ii)
w

gn

dθ

2π
→ 1

2

(
dµ + w

dθ

2π

)
(9.2.37)

weakly as measures.
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(iii) If Ω = {θ | w(θ) > 0}, then

lim inf
∫

Ω

gn
dθ

2π
≥ |Ω|

2π
(9.2.38)

Proof. (i) We have for y ≥ 0,

4y + (1 − y)2 = (1 + y)2

so
4y2

(1 + y)2
≤ y

It follows that
|gn(eiθ)|2 ≤ |ϕn(eiθ)|2w(θ) (9.2.39)

so integrating, ∫
|gn(eiθ)|2 dθ

2π
≤

∫
|ϕn(eiθ)|2dµ −

∫
|ϕn(eiθ)|2 dµs

which is (9.2.36).
(ii)

w

gn
=

1
2

(
1

|ϕn(eiθ)|2 + w

)
so (9.2.37) follows from the Bernstein-Szegő approximation theorem (Theo-
rem 1.7.8).

(iii) Let f ∈ C(∂D). Writing

f
√

w = f
√

gn

√
w

gn

and using the Schwarz inequality, we find that(∫
f(eiθ)

√
w(eiθ)

dθ

2π

)2

≤
(∫

Ω

gn(eiθ)
dθ

2π

)(∫
|f(eiθ)|2 w(eiθ)

gn(eiθ)
dθ

2π

)
so taking n to infinity and using (9.2.37), we have(∫

f(eiθ)
√

w(eiθ)
dθ

2π

)2

≤ L

{
1
2

∫
|f(eiθ)|2[dµ(eiθ) + dµac(eiθ)]

}
(9.2.40)

where

L = lim inf
∫

Ω

gn(eiθ)
dθ

2π

We now use an argument familiar from the last section and approximate any
f in L2(dµ) by f ’s in C(∂D) using the density of C(∂D) in L2(dµ). The right side
of (9.2.40) converges trivially and the left side does by writing f

√
w = (f

√
w )(1)

and using the Schwarz inequality. Thus (9.2.40) holds for all f ∈ L2(∂D, dµ).
Pick a set A ⊂ ∂D with |A| = 0 and µs(∂D\A) = 0 and let

f(eiθ) =

{
0 if eiθ /∈ Ω or eiθ ∈ A

1√
w(eiθ)

if eiθ ∈ Ω\A

which is in L2(∂D, dµ). Then (9.2.40) becomes( |Ω|
2π

)2

≤ L

( |Ω|
2π

)
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which is (9.2.38). �

We are prepared to prove (9.2.7):

Theorem 9.2.7. Let dµ = w dθ
2π + dµs be a nontrivial probability measure on

∂D. Let Ω = {θ | w(θ) > 0}. Then

lim sup
[{∫

|fn(eiθ, dµ)|2 dθ

2π

}2

+4
∫

|ϕn(eiθ, dµ)|2 dµs(θ)
]
≤ 8

(
1− |Ω|

2π

)
(9.2.41)

Proof. We have

LHS of (9.2.41) ≤ lim sup
[
4
∫

|1 − gn|2 dθ

2π
+ 4

∫
|ϕn|2 dµs

]
(by (9.2.34))

≤ lim sup
{

4 + 4
[∫ 2π

0

|gn|2 dθ

2π
+

∫
|ϕn|2 dµs

]
− 8

∫ 2π

0

|gn| dθ

2π

}

≤ 8 − 8 lim inf
∫ 2π

0

|gn| dθ

2π
(by (9.2.36))

≤ 8 − 8|Ω|
2π

(by (9.2.38)) �

Proof of Theorem 9.2.1 and (9.2.9). We proved (9.2.8) in Theorem 9.2.2
and (9.2.7) in Theorem 9.2.7. This implies Theorem 9.2.1. As noted in the intro-
duction to this section, (9.2.9) then follows from (9.2.6) and (9.2.7). �

Theorem 9.2.8 (Second Proof of Rakhmanov’s Theorem). Let dµ = w(θ) dθ
2π

+ dµs be a nontrivial probability measure on ∂D. If w(θ) > 0 for dθ
2π -a.e. θ, then

lim
n→∞ |αn| = 0

Proof. Immediate from (9.2.9). �

We next want to find an analog of (9.1.27) in a setting where the Schur iterates
are the fundamental objects:

Theorem 9.2.9. Let dµ = w dθ
2π + dµs be a nontrivial probability measure on

∂D and fn(z) its Schur iterates. Then∫ 2π

0

| |ϕn(eiθ)|2w(θ) − 1| dθ

2π
≤ 8

∫ 2π

0

|fn(eiθ)| dθ

2π
(9.2.42)

Proof. Given y ∈ R, let y± = 1
2 (|y| ± y), so y = y+ − y− and |y| = y+ + y−.

If
qn(eiθ) = |ϕn(eiθ)|2w(θ) − 1 (9.2.43)

then ∫
|qn| dθ

2π
= 2

∫
(qn)−

dθ

2π
+

∫
qn

dθ

2π

≤ 2
∫

(qn)−
dθ

2π
(9.2.44)

since
∫

qn
dθ
2π =

∫ |ϕn|2 dµ − 1 − ∫ |ϕn|2 dµs = − ∫ |ϕn|2 dµs ≤ 0.
By (9.2.39), −qn ≤ 1 − g2

n so

(qn)− ≤ (1 − g2
n)+ ≤ 2(1 − gn)+ (9.2.45)
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since (1 − g2
n)+ �= 0 ⇒ 0 ≤ gn ≤ 1 ⇒ (1 − g2

n) = (1 + gn)(1 − gn) ≤ 2(1 − gn). But
(9.2.35) says

1 − gn = |fn|2 − Re(zbnfn)gn

so if (1 − gn)+ ≥ 0, we have gn ≤ 1 and thus

(1 − gn)+ ≤ |fn|2 + |zbnfn| ≤ 2|fn| (9.2.46)

since |z| = 1, |bn| ≤ 1, and |fn| ≤ 1. It follows that

(qn)− ≤ 4|fn| (9.2.47)

so ∫
(qn)−

dθ

2π
≤ 4

∫
|fn| dθ

2π
(9.2.48)

(9.2.44) and (9.2.48) imply (9.2.42). �
Complementing (9.2.42) is

Proposition 9.2.10. Let dµ = w dθ
2π + dµs be a nontrivial probability measure

on ∂D. Then
1
2π

∫ 2π

0

|fn(eiθ)|2 dθ

2π
≤ 2

∫ 2π

0

| |ϕn(eiθ)|2w(θ) − 1| dθ

2π
(9.2.49)

Proof. With gn given by (9.2.6),

|1 − gn| =
|1 − |ϕn|2w|
|1 + |ϕn|2w| ≤ | |ϕn|2w − 1|

so (9.2.33) implies (9.2.49). �
Interestingly enough, these results allow a link to the ideas of Section 9.1:

Corollary 9.2.11. In terms of quantity bn,� of (9.1.1), we have

|αn|2 ≤ 2bn,� � = 1, 2, . . . (9.2.50)

and
bn,1 ≤ 8|αn| (9.2.51)

Proof. Let dµk be the Bernstein-Szegő approximation dµk = dθ/2π|ϕk(eiθ)|2.
Then dµk has Verblunsky coefficients (α0, α1, . . . , αk−1, 0, . . . ), so

fm(0, dµk) = αm m = 0, 1, . . . , k − 1 (9.2.52)

and
fk−1(z, dµk) = αk−1 (9.2.53)

If dµk = wk(θ) dθ
2π , then since ϕn(z; dµk) = ϕn(z; dµ) for n ≤ k,

k > n ⇒
∫ 2π

0

| |ϕn(eiθ; dµk)|2wk(θ) − 1| dθ

2π
= bn,k−n (9.2.54)

Thus (9.2.49) and (9.2.52) imply for � ≥ 1,

|αn|2 ≤
∫
|fn(eiθ, dµn+�)|2 dθ

2π

≤ 2bn,�

proving (9.2.50) and, by (9.2.42) and (9.2.53),

bn,1 ≤ 8
∫ 2π

0

|fn(eiθ, dµn+1)| dθ

2π
= 8|αn|
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proving (9.2.51). �

Recall that a sequence of functions, fn, are said to converge in measure to f if
and only if for all ε > 0,

µ({x | |fn(x) − f(x)| > ε}) → 0

as n → ∞. Note that

Proposition 9.2.12. Let fn, f be a sequence of functions on a probability mea-
sure space so that for some p ∈ (1,∞], supn ‖fn‖p < ∞ with ‖ · ‖p the Lp-norm.
Then the following are equivalent:
(i) fn → f in measure.
(ii) ‖fn − f‖q → 0 for one q in [1, p).
(iii) ‖fn − f‖q → 0 for all q in [1, p).

Proof. (iii) ⇒ (ii) is obvious, so we will prove (ii) ⇒ (i) and (i) ⇒ (iii). Let

Sε,n = {x | |fn(x) − f(x)| > ε} (9.2.55)

(ii) ⇒ (i) We have, by looking at the contribution to the integral when x ∈ Sε,n,∫
|fn − f |q dµ ≥ εqµ(Sε,n)

so
µ(Sε,n) ≤ ε−q‖fn − f‖q

q

(i) ⇒ (iii) Given q, let r = (1
q − 1

p )−1. Then, by Hölder’s inequality,∫
Sε

|fn − f |q dµ ≤ ‖f − fn‖q
pµ(Sε,n)q/r

while, clearly, ∫
Ω\Sε

|fn − f |q dµ ≤ εq

so
‖fn − f‖q

q ≤ εq +
[
2q sup

n
‖fn‖q

p

]
µ(Sε,n)q/r

By (i), the lim sup of the second term is 0, so for each ε, lim sup ‖fn −f‖q ≤ ε, that
is, fn → f in Lq. �

We can summarize in the following:

Theorem 9.2.13. Let dµ = w dθ
2π + dµs be a nontrivial probability measure on

∂D. The following are equivalent:
(i) w(θ) > 0 for dθ

2π -a.e. θ.
(ii) The Schur iterates, fn, restricted to ∂D converge to zero in measure.
(iii) For some p < ∞,

lim
n→∞

∫
|fn(eiθ)|p dθ

2π
= 0 (9.2.56)

(iv) (9.2.56) holds for all p < ∞.
(v) limn→∞

∫ 2π

0
| |ϕn(eiθ)|2w(θ) − 1| dθ

2π = 0
(vi) For some α ∈ (0, 1), we have

lim
n→∞

∫ 2π

0

[|ϕn(eiθ)|2w(θ)]α
dθ

2π
= 1 (9.2.57)
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(vii) (9.2.57) holds for all α ∈ (0, 1).

Proof. (ii), (iii), (iv) are equivalent, given Proposition 9.2.12 and ‖fn‖∞ ≤ 1.
So we need only show (i) ⇒ (iii), (iv) ⇒ (v) ⇒ (i), (v) ⇒ (vi) ⇒ (vii) ⇒ (v).
(i) ⇒ (iii) for p = 2 by (9.2.7).

(iv) ⇒ (v) by (9.2.42).

(v) ⇒ (i) since if Ω = {θ | w(θ) > 0}, then

1
2π

|2π\Ω| ≤
∫ 2π

0

| |ϕn(eiθ)|2w − 1| dθ

2π

(v) ⇒ (vi) In the proof of Theorem 9.1.14, we show (9.1.29) implies (9.1.32), so (v)
implies that

lim
n→∞

∫ 2π

0

|(|ϕn|2w)1/2 − 1|2 dθ

2π
= 0

Thus (9.2.57) holds for α = 1
2 .

(vi) ⇒ (vii) βn(α) = log{∫ 2π

0
[|ϕn(eiθ)|2w(θ)]α dθ

2π} is convex in α by Hölder’s in-
equality and βn(0) = βn(1) = 1. It follows that if βn(α0) → 1, it holds for all
α ∈ [0, 1].

(vii) ⇒ (v) 1 and
√|ϕn|2w are both vectors of length at most 1 in L2(∂D, dθ

2π ), so
‖√|ϕn|2w − 1‖2

2 ≤ 2 − 2〈1,
√|ϕn|2w 〉. Thus (vii) implies

√|ϕn|2w → 1 in L2, so
|ϕn|2w → 1 in L1, that is, (v) holds. �

As a final result in this section, we want to use Khrushchev’s formula, (9.2.17),
to improve Theorem 2.6.4.

Theorem 9.2.14. Let dµ = w(θ) dθ
2π + dµs be a nontrivial probability measure

obeying the Szegő condition, κ∞ < ∞. Then (2.6.17) holds in the sense of norm
convergence, that is,

lim
n→∞

∫
|log|ϕn(eiθ)|−2 − log(w(θ))| dθ

2π
= 0 (9.2.58)

Proof. The integrand, In(θ), in (9.2.58) is |− log(w(θ)|ϕn(eiθ)|2)|, which, by
(9.2.17), is bounded by

In(θ) ≤ log
1

[1 − |fn|2] + 2|log |1 − eiθbnfn| | (9.2.59)

By Lemma 2.7.8, ∫
log|1 − eiθbnfn| dθ

2π
= 0

since zbn(z)fn(z)|z=0 = 0.
Thus ∫

|log |1 − eiθbnfn| | dθ

2π
= 2

∫
(log|1 − eiθbnfn|)+ dθ

2π

≤ 2
∫

|fn(eiθ)| dθ

2π
(9.2.60)

≤ 2
(∫

log
(

1
1 − |fn|2

)
dθ

2π

)1/2

(9.2.61)
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where (9.2.60) comes from (log|1 + x|)+ ≤ log(1 + |x|) ≤ |x| (since log(1 + y) =∫ y

0
du

1+u ≤ y for y > 0) and (9.2.61) comes from the Schwarz inequality and y ≤
− log(1 − y) = y + y2

2 + · · · for y > 0. By (9.2.59), we see that (9.2.58) is implied
by

lim
n→∞−

∫
log(1 − |fn|2) dθ

2π
= 0 (9.2.62)

By (2.7.16) (a version of Szegő’s theorem), the integral on the left of (9.2.62)
is

−
∞∑

j=n

log(1 − |αj |2)

which goes to zero as n → ∞ since
∑∞

j=1|αj |2 < ∞. �
Remarks and Historical Notes. This section is a rearrangement of part
of Khrushchev [625], which we follow. The one innovation here is our use of
(9.2.39). This occurs first in our proof of Proposition 9.2.6(i), which improves on
Khrushchev’s Lemma 6.2. It also allows an 8 in (9.2.42) where Khrushchev gets a
12. (9.2.22) appears earlier in Foias-Frazho [358]. As we showed, Khrushchev’s
formula, (9.2.18), is equivalent to (4.4.7). That formula in turn is essentially
the same as equation (2.37) of Geronimo-Teplyaev [399] — so these authors had
Khrushchev’s formula five years before he did, but they did not realize its usefulness
as Khrushchev did.

9.3. Further Aspects of Khrushchev’s Theory

Two themes and their relation dominate this section. In the last two sections,
we proved that if w(θ) > 0 for a.e. θ, then |ϕn(eiθ)|2 dµ → dθ

2π in norm. Here we
will instead consider the question of when the following holds:
Definition. Let dµ be a nontrivial probability measure on ∂D. We say dµ obeys
the Rakhmanov condition if and only if |ϕn(eiθ)|2 dµ(θ) converges weakly to dθ

2π ,
that is, if and only if for all f ∈ C(∂D),

lim
n→∞

∫
f(eiθ)|ϕn(eiθ)|2 dµ(θ) =

∫
f(eiθ)

dθ

2π
(9.3.1)

Definition. A sequence of Verblunsky coefficients is said to obey the Máté-Nevai
(MN) condition if and only if for each fixed � = 1, 2, . . . ,

lim
n→∞ αnαn+� = 0 (9.3.2)

One of the main results in this section is

Theorem 9.3.1 (Khrushchev [625]). Let dµ be a nontrivial probability measure
on ∂D. dµ obeys the Rakhmanov condition if and only if its Verblunsky coefficients
{αn(dµ)}∞n=0 obey the MN condition.

The second theme involves the Schur approximates, f [n](z) = An(z)/Bn(z), de-
fined in Section 1.3. Recall (1.3.42) that says f [n](z) → f(z) uniformly on compact
subset of D. The issue is convergence on ∂D.
Definition. We say dµ obeys the Khrushchev condition if and only if either
(i) dµac = 0 (i.e., dµ is purely singular), or
(ii) αn(dµ) → 0 as n → ∞
(or both).


