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10.4. The Group U(1, 1)

Let J =
(

1 0
0 −1

)
. U(1, 1) is the group of all 2 × 2 matrices obeying

A∗JA = J (10.4.1)

As we saw in (1.5.36), each of the basic matrices

A(α, z) = (1 − |α|2)−1/2

(
z −ᾱ

−αz 1

)
(10.4.2)

lies in U(1, 1), and we will eventually prove U(1, 1) is the smallest group containing
all the A(α, z). Since the matrix Tn(z) of (3.2.28) is a product of A(αj , z)’s, it
lies in U(1, 1), and as the Tn(z) becomes a key tool in the sections below, general
features of U(1, 1) will be important. So our goal in this section is to study these
features.

We will also define SU(1, 1) = {A ∈ U(1, 1) | det(A) = 1}. By (10.4.1),
|det(A)|2 = 1 if A ∈ U(1, 1), so det(A) = eiθ. Then e−iθ/2A ∈ SU(1, 1), so ∂D ×
SU(1, 1) → U(1, 1) by (ω,A) �→ ωA is a two-fold cover of U(1, 1). We will define
(det(A))1/2 to be that square root with argument in [0, π) and, given A ∈ U(1, 1),
define As ∈ SU(1, 1) by

As = det(A)−1/2A

A = det(A)1/2As (10.4.3)

Let J̃ be any matrix with J̃∗ = J̃ = J̃−1 and Tr(J̃) = 0. Then there is a
unitary W with WJ̃W−1 = J . It follows if we define

U(1, 1; J̃) = {A | A∗J̃A = J̃}
and similarly for SU(1, 1; J̃), we have

WU(1, 1; J̃)W−1 = U(1, 1) (10.4.4)

so the groups are unitarily equivalent. We mention this because

Proposition 10.4.1. Let Jr =
(

0 i
−i 0

)
. Then SU(1, 1;Jr) is equal to SL(2, R),

the set of 2 × 2 real matrices of determinant 1.

Proof. If A =
( α γ

δ β

)
and det(A) = 1, then A−1 =

(
β −γ
−δ α

)
so (if det(A) = 1),

by a direct calculation,
At = JrA

−1J−1
r (10.4.5)

and thus (under det(A) = 1!)

A∗JrA = Jr ⇔ A∗ = At ⇔ A = Ā

That means SU(1, 1;Jr) = {A | A is real} ∩ {A | det(A) = 1}, which is SL(2, R), as
claimed. �

This shows a close connection between Jacobi matrices and OPUC. Transfer
matrices for Jacobi matrices and Schrödinger operators at energy E ∈ R lie in
SL(2, R) = SU(1, 1;Jr). Those for OPUC lie in U(1, 1;J). jr, the bilinear form
induced by Jr, is given by

jr(x, x) = i(x̄1x2 − x̄2x1)

so J-invariance for OPUC is an analog of constancy of the Wronskian in the OPRL
case.
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Corollary 10.4.2. If A ∈ SU(1, 1), then Tr(A) is real.

Proof. By unitary equivalence, we need only prove this for one J̃ . Since
SU(1, 1;Jr) consists of real matrices, clearly Tr(A) ∈ R for that realization. �

We can use the reality of trace to identify the eigenvalues of an A ∈ U(1, 1):

Theorem 10.4.3. Let A ∈ SU(1, 1) be different from ±1. Then one of the
following holds:
(a) (Elliptic Case) Tr(A) ∈ (−2, 2). Then A has two distinct eigenvalues

λ1(A), λ2(A) with λ2(A) = λ∗
1(A) and |λ1(A)| = |λ2(A)| = 1.

(b) (Parabolic Case) Tr(A) = ±2. Then A has a single eigenvalue at +1 or −1
with algebraic multiplicity 2 and geometric multiplicity 1.

(c) (Hyperbolic Case) Tr(A) ∈ R\[−2, 2]. Then A has two distinct eigenvalues
λ1(A), λ2(A) with λi(A) real, |λ1(A)| > 1 > |λ2(A)| and λ2(A) = λ1(A)−1.
If A ∈ U(1, 1) is nonconstant, then one of the following holds:

(d) (Elliptic Case) |Tr(A)| < 2. A has two distinct eigenvalues λ1(A), λ2(A) with
|λ1(A)| = |λ2(A)| = 1.

(e) (Parabolic Case) |Tr(A)| = 2. Then A has a single eigenvalue λ1(A) with
|λ1(A)| = 1. It has algebraic multiplicity 2 and geometric multiplicity 1.

(f) (Hyperbolic Case) |Tr(A)| > 2. Then A has distinct eigenvalues λ1(A), λ2(A)
with |λ1(A)| > 1 > |λ2(A)| and λ2(A) = λ1(A)−1 (i.e., |λ2| = |λ1|−1 and
arg(λ2) = arg(λ1)).
Moreover, if Au = λu, then A∗(Ju) = λ−1(Ju). Finally,

(g) In the elliptic case, if u1, u2 are the two eigenvectors 〈u2, Ju1〉 = 0, 〈u1, Ju1〉 >
0 > 〈u2, Ju2〉.

(h) In the hyperbolic or parabolic case, if Au = λu, then 〈u, Ju〉 = 0.

Proof. Writing A = (det(A))1/2As, the results for SU(1, 1) imply those for
U(1, 1), so we will suppose A ∈ SU(1, 1). The eigenvalues of A obey

λ2 − Tr(A)λ + det(A) = 0

so
λ2 − 2xλ + 1 = 0 (10.4.6)

with x ∈ R. If |x| < 1, then x = cos(θ), θ �= 0, π, for some θ and the solutions
of (10.4.6) are e±iθ, proving (a). If x = ±1, the solutions are ±1. Since A �= ±1,
±1 cannot be eigenvalues of geometric multiplicity 2. This proves (b). If |x| > 1,
x = ± cosh(α) for some α > 0 and roots are ±eα and ±e−α, proving (c).

To prove that
Au = λu ⇒ A∗(Ju) = λ−1(Ju) (10.4.7)

we need only note that (10.4.1) is equivalent to

A∗J = JA−1 (10.4.8)

To prove (g), we note that if Auj = λjuj , then

λ−1
1 〈u2, Ju1〉 = 〈u2, A

∗Ju1〉 (by (10.4.7))

= 〈Au2, Ju1〉
= λ̄2〈u2, Ju1〉

Since λ−1
1 = λ2 and λ2 �= λ̄2, this implies 〈u2, Ju1〉 = 0. Since J is nondegenerate

and nondefinite, one 〈uj , Juj〉 is positive and one negative.
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To prove (h) in the hyperbolic case, suppose Au = λu. Then

λ−1〈u, Ju〉 = 〈u,A∗Ju〉
= 〈Au, Ju〉
= λ̄〈u, Ju〉

Since λ̄ �= λ−1 in this case, 〈u, Ju〉 = 0.
In the parabolic case, if Au = ±u, there is a w with Aw = ±w + u. Thus

〈u, Ju〉 = 〈Aw, Ju〉 ∓ 〈w, Ju〉
= 〈w,A∗Ju〉 ∓ 〈w, Ju〉
= 〈w, JA−1u〉 ∓ 〈w, Ju〉
= ±〈w, Ju〉 ∓ 〈w, Ju〉
= 0 �

Remark. One can also use (10.4.8) and σ(A∗) = σ(A) to prove (a)–(c).
A key consequence of this theorem is:

Corollary 10.4.4. {A ∈ U(1, 1) | the eigenvalues of A are unequal and of
magnitude 1} is open.

Proof. It is given by |Tr(A)| < 2. �

Example 10.4.5. Let α ∈ D and A(α, z) given by (10.4.2). Then, if z = eiθ,
|Tr(A(α, z))| = ρ−12 cos( θ

2 ). Thus supn ‖An‖ < ∞ if and only if |cos( θ
2 )| < ρ

or, equivalently, |sin( θ
2 )| > |α| or θ ∈ (θ|α|, 2π − θ|α|) where θ|α| = 2arcsin(|α|).

This is precisely the region of the essential spectrum of Geronimus polynomials
(Example 1.6.12). We will see later (Theorem 11.1.2) that this is no coincidence. �

Any invertible matrix A can be decomposed A = U |A| with |A| =
√

A∗A
positive and U unitary. We will show that |A| ∈ U(1, 1) if A is, and explicitly find
all such |A| and U , and so parametrize U(1, 1).

Theorem 10.4.6. (i) Any A ∈ U(1, 1) can be written uniquely as

A = U |A| (10.4.9)

with U, |A| ∈ U(1, 1), |A| ≥ 0, and U unitary.
(ii) Any A ∈ U(1, 1) with A > 0 has the form

A =
(

cosh(x) eiϕ sinh(x)
e−iϕ sinh(x) cosh(x)

)
(10.4.10)

for some x ≥ 0 and ϕ ∈ [0, 2π) or equivalently,

A = ρ−1

(
1 −ᾱ

−α 1

)
(10.4.11)

with ρ = (1 − |α|2)1/2 and α ∈ D.
(iii) Any U ∈ U(1, 1) with U unitary has the form

U =
(

eiϕ1 0
0 eiϕ2

)
(10.4.12)
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(iv) Any A ∈ U(1, 1) has the form A =
( α γ

δ β

)
with

|α| = |β| |γ| = |δ| |α|2 − |γ|2 = 1 (10.4.13)

arg(α) + arg(β) = arg(γ) + arg(δ) (10.4.14)

and conversely. Elements of SU(1, 1) are described by (10.4.13) and

arg(α) + arg(β) = 0 = arg(γ) + arg(δ) (10.4.15)

Equivalently,

A =
(

α γ
γ̄ ᾱ

)
(10.4.16)

with |α|2 − |γ|2 = 1.
(v) As topological spaces, U(1, 1) is homeomorphic to D × ∂D × ∂D and SU(1, 1)

to D × ∂D. In particular, both U(1, 1) and SU(1, 1) are connected.

Proof. It is useful to prove (ii) before (i).

(ii). If A > 0, det(A) > 0, so |det(A)| = 1 implies A ∈ SU(1, 1). Thus, if

A =
( α γ

δ β

)
, A−1 =

(
β −γ
−δ α

)
and JA−1J−1 =

(
β γ
δ α

)
. Thus A = JA−1J if and only

if α = β. A ≥ 0 implies α > 0, δ = γ̄, and α2 − |γ|2 = 1. Thus α = cosh(x) and
γ = sinh(x)eiϕ, proving (10.4.10). Moreover, if

P (x, ϕ) =
(

cosh(x) eiϕ sinh(x)
e−iϕ sinh(x) cosh(x)

)
(10.4.17)

an easy calculation shows

P (x, ϕ)P (y, ϕ) = P (x + y, ϕ) (10.4.18)

and, in particular,
P (x, ϕ)1/2 = P ( 1

2 x, ϕ) (10.4.19)

(i). A∗A ∈ SU(1, 1) and A∗A ≥ 0 so, by (ii) and (10.4.19), |A| ∈ SU(1, 1) and so
U = A|A|−1 ∈ U(1, 1). Uniqueness is a general feature of the polar decomposition
A = U |A|.
(iii). U∗ = U−1 and (10.4.1) imply that UJ = JU , so U is diagonal.

(iv). By (i)–(iii),

A =
(

eiϕ1 0
0 eiϕ2

)(
cosh(x) eiϕ3 sinh(x)

e−iϕ3 sinh(x) cosh(x)

)

=
(

eiϕ1 cosh(x) ei(ϕ1+ϕ3) sinh(x)
ei(ϕ2−ϕ3) sinh(x) eiϕ2 cosh(x)

)

from which (10.4.13) and (10.4.14) are immediate. A ∈ SU(1, 1) if and only if
ϕ1 = −ϕ2, from which (10.4.15) is immediate.

(v). Let Ud(1) be the diagonal unitary matrices and SUd(1) those U ∈ Ud(1) with
det(U) = 1. Let PJ be the positive definite matrix of the form (10.4.11). (U, |A|) →
U |A| maps Ud(1)×PJ (resp. SUd(1)×PJ ) bijectively and bihomeomorphically onto
U(1, 1) (resp. SU(1, 1)). Since PJ is homeomorphic to D by (10.4.11) and Ud(1)
(resp. SU(1)) to ∂D × ∂D (resp. ∂D), the result is proven. �
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Remarks. 1. U(1, 1) and SU(1, 1) are thus connected Lie groups of dimension
4 and 3, respectively. Their Lie algebras (given a Lie group, G, of matrices, its Lie
algebra, g, is given by g = {A | etA ∈ G for all t ∈ R}) are spanned by

(
i 0
0 −i

)
,

( 0 1
1 0 ),

(
0 i
−i 0

)
for SU(1, 1) and those three plus ( i 0

0 i ) for U(1, 1). Equivalently,
u(1, 1) = {A | A∗J +JA = 0} and su(1, 1) = {A | A∗J +JA = 0, Tr(A) = 0}. This
lets us see that the closed group, G, generated by {A(α, z)}z∈∂D,α∈D is U(1, 1). For
d
dtA(teiψ, z)

∣∣
t=0

=
(

0 −e−iψ

−eiψ 0

)
and ( 0 1

1 0 ) and
(

0 i
−i 0

)
generate the Lie algebra

for SU(1, 1). Thus the group generated by {A(α, z = 0)}α∈D is SU(1, 1). Since
A(α = 0, e2iθ) = eiθ

(
eiθ 0
0 e−iθ

)
, G is U(1, 1).

2. (10.4.16) implies SU(1, 1) is a three-dimensional hyperboloid in R
4.

Not only are the components of the polar decomposition in U(1, 1), so are the
components of standard similarities.

Theorem 10.4.7. Let A ∈ SU(1, 1). Then
(i) If A is elliptic, there exists V ∈ SU(1, 1) so that

A = V UV −1 (10.4.20)

with U diagonal and unitary.
(ii) If A is hyperbolic, there exist V ∈ SU(1, 1) so that

A = VP (x, ϕ = 0)V −1 (10.4.21)

with P (x, ϕ) given by (10.4.17) and x > 0.
(iii) If A is parabolic, there exist V ∈ SU(1, 1) so that

A = VP0V
−1 or A = −VP0V

−1 (10.4.22)

where

P0 =

⎛
⎝1 + 1

2 i − 1
2 i

1
2 i 1 − 1

2 i

⎞
⎠ (10.4.23)

Remarks. 1. There are natural canonical representations in the elliptic and
hyperbolic cases, but not in the parabolic case, so we made an ad hoc choice in (iii)
so that P0

(
1
1

)
=

(
1
1

)
, P0

(
i
−i

)
=

(
i
−i

)
+

(
1
1

)
.

2. There are similar results for A ∈ U(1, 1) with an extra (det(A))1/2 factor in
front.

Proof. (i) By Theorem 10.4.3(a) and (g), A has an eigenvector u with
J(u, u) > 0. Thus u =

(
1
α

)
with α ∈ D and Au = eiθu. The other eigenvector

has J(u, v) = 0 so v =
(
ᾱ
1

)
and Av = e−iθ. Let

V =
1
ρ

(
1 α
ᾱ 1

)

with ρ =
√

1 − |α|2. Then V ∈ SU(1, 1) and V
(
1
0

)
= u and V

(
0
1

)
= v so

AV = V

(
eiθ 0
0 e−iθ

)

proving (10.4.20).
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(ii) Since A is hyperbolic, there exist eigenvectors u, v with J(u, u) = J(v, v) =
0 and eigenvalues ex, e−x for x > 0. Thus u =

(
1
λ

)
, v =

(
1
µ

)
with |λ| = |µ| = 1. Let

λµ = −e2iθ, γ = λe−iθ, so γ̄ = −µe−iθ. Define

α =
1 − γ

1 + γ

so ᾱ = −α and let

V =
1
ρ

(
e−iθ/2 αe−iθ/2

ᾱeiθ/2 eiθ/2

)

with ρ = (1 − |α|2)1/2 so V ∈ SU(1, 1). Thus

V

(
1
1

)
= c+

(
1

γeiθ

)
= c+

(
1
λ

)

where c+ = (1 + α)e−iθ/2ρ−1, and we used ᾱ = −α and 1−α
1+α = γ. Similarly, since

1+α
1−α = γ−1 = γ̄, we get

V

(
1
−1

)
= c−

(
1

−γ̄eiθ

)
= c−

(
1
µ

)

with c− = (1 − α)eiθ/2ρ−1. Since P+(1, ϕ = 0)
(

1
±1

)
= e±x

(
1
±1

)
, we have

AV

(
1
±1

)
= VP+(1, ϕ = 0)

(
1
±1

)

proving (10.4.21).
(iii) We consider the case Tr(A) = 2 since Tr(A) = −2 involves replacing P0 by

−P0. (10.4.16) and Tr(A) = 2 means

A =
(

1 + ia −aieiϕ

aieiϕ 1 − ia

)

for some a ∈ R and ϕ ∈ [0, 2π). Let 2a = ex and

V =
(

eiϕ/2 cosh(x) eiϕ/2 sinh(x)
e−iϕ/2 sinh(x) eiϕ/2 cosh(x)

)

Then A = VP0V
−1 by a direct calculation. �

We define a complex conjugation, C, on C
2 by

Cu =
(

0 1
1 0

)
ū (10.4.24)

that is, C
(
u1
u2

)
=

(
ū2
ū1

)
. Then

Lemma 10.4.8. (a) C is a complex conjugation, that is,

C(au + bv) = āCu + b̄Cv

for u, v ∈ C
2, a, b ∈ C, C2 = 1, and ‖Cu‖ = ‖u‖.

(b) For all u, J(Cu, u) = 0.
(c) For all A ∈ SU(1, 1), CA = AC.

Remark. (c) is a unitary translation of the fact that A ∈ SU(1, 1;Jr) is real.
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Proof. (a) Antilinearity is immediate, C2 = 1 follows from ( 0 1
1 0 )2 = ( 1 0

0 1 )
and ‖Cu‖ = ‖u‖ follows from the fact that ( 0 1

1 0 ) is unitary.

(b) J(Cu, u) = (Cu)1 u1 − Cu2 u2 = u2u1 − u1u2 = 0.
(c) If A has the form (10.4.16), then

CAC =
(

0 1
1 0

) (
ᾱ γ̄
γ α

)(
0 1
1 0

)
= A

by a direct calculation. �
This lemma sheds light on several aspects of Theorem 10.4.3. If A ∈ SU(1, 1)

and Au = λu, then by (c) of the lemma, A(Cu) = λ̄Cu. Thus, in the hyperbolic
case, Cu = eiθu and so, by (b), J(u, u) = 0. In the elliptic case, if Au1 = λu1,
Cu1 = u2 and, by (b), J(u1, u2) = 0.

C is useful because it allows the following generalization of the fact that in the
hyperbolic case, eigenvectors obey J(u, u) = 0.

Theorem 10.4.9. Suppose that T1, T2, . . . is a sequence in U(1, 1) so that for
some nonzero u, v ∈ C

2,

lim
n→∞

‖Tnu‖
‖Tnv‖ = 0 (10.4.25)

Then J(u, u) = 0.

Proof. Suppose Cu is not a multiple of u. Then Cu = au + bv with b �= 0
since (10.4.25) implies that u and v are independent. Since ‖TnCu‖ ≥ |b| ‖Tnv‖ −
|a| ‖Tnu‖, (10.4.25) implies lim ‖Tnu‖

‖TnCu‖ = 0. But ‖TnCu‖ = ‖CTnu‖ = ‖Tnu‖ so
‖Tnu‖
‖TnCu‖ = 1. It follows that Cu must be a multiple of u, that is, Cu = eiθu. Thus
J(u, u) = J(e−iθCu, u) = eiθJ(Cu, u) = 0 by Lemma 10.4.8(b). �

As a final subject in this section, we want to begin to discuss U(1, 1) as the group
of fractional linear transformations of D̄ onto D̄ and invariant measures on ∂D, a
subject central to Section 10.6. Given any 2×2 invertible matrix, we define z

.= Aw
by (1.3.50)/(1.3.59) and LA so (1.3.59) is z = LA(w). Notice that LAB = LALB

and that for a constant cA,z,

A

(
1
z

)
= cA,z

(
1

LA(z)

)
(10.4.26)

As usual, we view
(
1
z

)
as the line {( λ

λz

) | λ ∈ C} with
(

1
∞

)
as the line {(0

λ

) | λ ∈ C}
so C ∪ {∞} is the Riemann sphere, S, and LA is a continuous map of S to itself.
From this point of view, the map C of (10.4.24) takes

(
1
λ

)
to

(
λ̄
1

)
, which is in the

line
(

1
1/λ̄

)
, that is, LC(z) = 1

z̄ is inversion in the unit circle.

Proposition 10.4.10. (a) A 2 × 2 matrix, A, with |det(A)| = 1 has A ∈
U(1, 1) if and only if LA maps D onto D (and so also ∂D onto ∂D).

(b) A with det(A) = 1 is in SL(2, R) if and only if LA maps R to R and C+ to
C+.

Proof. (a) If A ∈ U(1, 1), J
(
A

(
1
z

)
, A

(
1
z

))
= J

((
1
z

)
,
(
1
z

))
= 1 − |z|2 = 0 if

|z| = 1. But J
((

1
w

)
,
(

1
w

))
= 0 if and only if |w|2 = 1. Thus LA maps ∂D to

∂D. Moreover, J
(
A

(
1
0

)
, A

(
1
0

))
= J

((
1
0

)
,
(
1
0

))
= 1 so J

((
1

LA(0)

)
,
(

1
LA(0)

))
> 0, so

LA(0) ∈ D. Thus LA maps D to D.
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Conversely, if f is any invertible linear map of D onto D,

g(z) =
f(z) − f(0)

1 − f(0) f(z)

maps ∂D to ∂D and has g(z) = 0. By the Schwarz principle, | g(z)
z | ≤ 1. By

invertibility, g−1 also maps D to D, | g−1(z)
z | ≤ 1 or | z

g(z) | ≤ 1. Thus | g(z)
z | = 1, so

g(z) = eiθz and f(z) is given by

f(z) =
f(0) + eiθz

1 + f(0) eiθz

that is, f = LA with

A = (1 − |f(0)|2)−1/2

(
eiθ f(0)

eiθ f(0) 1

)
in U(1, 1).

(b) Let Jr be given by Proposition 10.4.1. Then WJrW
−1 = J where W =(

1 i
1 −i

)
. Thus, by (10.4.4),

SL(2, R) = W−1
SU(1, 1)W (10.4.27)

Notice that LW (z) = 1+iz
1−iz maps R to ∂D and i to 0, and so C+ to D. Thus part

(a) and (10.4.27) imply that SL(2, R) is precisely the set of A’s with LA maps C+

onto C+. �
Remark. The proof of (a) shows that {eiψA(α, z) | α ∈ D, z ∈ ∂D, eiψ ∈ ∂D}

is all of U(1, 1).
Since LA ∈ U(1, 1) acts invertibly from ∂D to ∂D, it defines a bijection on

probability measures on ∂D by
µ �→ LA(µ)

given by ∫
f(eiθ) d(LAµ)(θ) =

∫
f(LA(eiθ)) dµ(θ) (10.4.28)

With that definition, LAB = LALB , for if (UAf)(eiθ) = f(LA(eiθ)), then UAUB =
UBA. It is reasonable to use the same symbol, LA, since if x ∈ ∂D and δx is a point
mass at x0, then LA(δx) = δLA(x) since∫

f(LAy) dδx = f(LAx) =
∫

f(y) dδLA(x)

Of course, ∂D has a distinguished measure, dθ
2π , which we will denote as dm(θ)

when we think of ∂D as a projective space for {u | J(u, u) = 0}, as we do here.
Given A ∈ U(1, 1), we define a positive function NA(eiθ) on ∂D by letting

uθ =
1√
2

(
1

eiθ

)
(10.4.29)

and
NA(eiθ) = ‖Auθ‖ (10.4.30)

Here is what LA does to dm:

Theorem 10.4.11. Let A ∈ U(1, 1). Then LAm is a.c. w.r.t. m. Indeed,

d(LAm)(θ) = NA−1(eiθ)−2 dm(θ) (10.4.31)
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Proof. We will give two proofs of this important result. For both proofs, we
note that multiplying A by eiη does not change either LA or NA, so we can, and
will, suppose that A ∈ SU(1, 1).

The first proof is a simple calculation. For A fixed, define ψ(θ) by(
1

eiψ(θ)

)
= C(θ)A

(
1

eiθ

)
(10.4.32)

We claim that ψ is a C∞ function of θ with dψ
dθ = NA(eiθ)−2.

Since A ∈ SU(1, 1), A =
( α γ

γ̄ ᾱ

)
. Since J(Auθ, Auθ) = 0,

NA(eiθ)2 = ‖Auθ‖2 = 2|(Auθ)1|2 = |α + γeiθ|2 (10.4.33)

On the other hand, by (10.4.32),

eiψ(θ) =
ᾱeiθ + γ̄

α + γeiθ
≡ G(θ) (10.4.34)

G(θ) is a C∞ function of eiθ which is never 0 since |γ| < |α|, and so ψ is C∞.
Moreover,

ψ′ = −iG′(θ)G(θ)−1

=
[
eiθ(|α|2 − |γ|2)

(α + γeiθ)2

][
α + γeiθ

ᾱeiθ + γ

]

=
1

|α + γeiθ|2
= NA(eiθ)−2

by (10.4.33).
By a change of variables in Riemann integrals,∫

f(eiθ) d(LAm)(θ) =
∫

f(LA(eiθ)) dm(θ)

=
∫

f(eiψ)
(

dψ

dθ

)−1

dm(ψ)

so we have to write (dψ
dθ )−1 as a function of ψ. We have

uψ =
Auθ

‖Auθ‖
so ‖Auθ‖‖A−1uψ‖ = 1. Thus(

dψ

dθ

)−1

= NA(eiθ)2

= NA−1(eiψ)−2

proving (10.4.31) and completing the first proof.
For the second proof, we let V = {u | Cu = u} where C is given by

(10.4.24). V is a two-dimensional real vector space spanned by
(
1
1

)
and

(
i
−i

)
. By

Lemma 10.4.8(c), any A ∈ SU(1, 1) maps V to V, so in a real basis for V, A has
real matrix elements. Since det(A) = 1 as a complex matrix on C

2, det(A) = 1 as
a real matrix on V. It follows that A−1 leaves Euclidean measure on V invariant.
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Introduce polar coordinates on V by
(

reiθ/2

re−iθ/2

)
. We have just proven that r dr dθ is

left invariant by A−1. But the map in (r, θ) induced by A−1 is

A−1 : (r, θ) = (rNA−1(eiθ), ϕ̃(θ))

with eiϕ̃ = LA(eiθ). This has Jacobian

I =
(

NA−1(eiθ) 0
r

∂NA−1

∂θ
∂ϕ̃
∂θ

)

Invariance of r dr dθ implies 1 = NA−1 det(I) = N2
A−1

∂ϕ̃
∂θ so ∂ϕ̃

∂θ = N−2
A−1 . By

(10.4.28),

d(LAm)(θ) =
dLA−1θ

dθ
dθ =

dϕ̃

dθ
dθ �

Given A ∈ U(1, 1) and a probability measure µ on ∂D, we say that µ is A-
invariant if and only if LA(µ) = µ. One can easily describe all the invariant
measures for a given A ∈ U(1, 1). Let I(A) be the set of invariant measures for A.

Theorem 10.4.12. Let A ∈ U(1, 1) with As given by (10.4.3). Then
(1) If A is hyperbolic, the invariant measures are precisely the convex combinations

of the point masses at the two eigenspaces of A.
(2) If A is parabolic, the unique invariant measure is the point mass at A’s unique

eigenspace.
(3) If A is elliptic and the eigenvalues of As are not roots of unity, then A has

a unique invariant measure described as follows. If
(

1
reiϕ

)
with r < 1 is an

eigenvector of A, the invariant measure is Pr(θ,−ϕ) dθ
2π where Pr is the Poisson

kernel (1.3.14).
(4) If A is elliptic and the eigenvalues of As are roots of unity, let m be the smallest

integer so that Am = 1 or −1. Let θ0 = 1, θ1, . . . , θm−1 be a reordering of
{ϕ | ϕ = Lj

A1, j = 0, 1, . . . ,m−1} so that 0 = θ0 < θ1 < · · · < θm−1 < 2π. Let
ν be an arbitrary probability measure on [θ0, θ1). Then µ = 1

m

∑m−1
j=0 LAj (ν)

is A-invariant and every A-invariant measure has this form.

Proof. (1) Suppose first that A =
(

cosh(x) sinh(x)
sinh(x) cosh(x)

)
for x > 0. Then

An

(
1

eiθ

)
= cn(θ)

(
1
βn

)
with

βn =
enx cos( θ

2 ) + ie−nx sin( θ
2 )

enx cos( θ
2 ) − ie−nx sin( θ

2 )
for (

1
eiθ

)
= eiθ/2

[
cos

(
θ

2

)(
1
1

)
− i sin

(
θ

2

)(
1
−1

)]
and A(

(
1
±1

)
= e±x

(
1
±1

)
.

As n → ∞, βn → 1 exponentially fast so long as θ �= π uniformly in each
[−α, α] with α < π. Therefore, for any f ∈ C(∂D),

f(Ln
A(eiθ)) →

{
f(1) if θ �= π

f(−1) if θ = π
(10.4.35)

so Ln
A(µ) → µ({−1})δ−1 + (1 − µ({−1}))δ1 weakly as n → ∞.
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It follows that any µ ∈ I(A) is a convex combination of δ1 and δ−1. Since

I(V AV −1) = LV [I(A)] (10.4.36)

and any hyperbolic element of SU(1, 1) is similar to
(

cosh(x) sinh(x)
sinh(x) cosh(x)

)
(by Theo-

rem 10.4.7), we obtain the result for arbitrary hyperbolic elements.
(2) The proof is similar to that for A hyperbolic using the fact that if A is

parabolic, An
(

1
eiθ

) → (
1

eiθ0

)
with an error of O( 1

n ) if
(

1
eiθ0

)
is the unique eigenvector.

(3) Let A =
(

eiθ0 0
0 e−iθ0

)
with θ0 an irrational multiple of 2π. By (10.4.28), if

LAµ = µ and µ̂k =
∫

e−ikθ dµ, then µ̂k = e2ikθ0 µ̂k, so for k �= 0, µ̂k = 0 and µ = dθ
2π

by uniqueness of solutions of the moment problem. This proves the result for A of
the special form. For any elliptic A, if

(
1

reiϕ

)
is an eigenvector of A, then

A = V

(
eiθ0 0
0 e−iθ0

)
V −1

with

V =
1
ρ

(
1 reiϕ

re−iϕ 1

)
where ρ = (1 − |r|2)1/2. By (10.4.28), if θ0 is irrational,

I(A) = {LV (dm)}
By (10.4.31),

(LV (dm))(eiθ) = NV −1(eiθ)−2 dm

Since

V −1 =
1
ρ

(
1 −reiϕ

−re−iϕ 1

)
NV −1(eiθ)2 = 2‖V −1µθ‖2 = ρ−2|1 − rei(ϕ+θ)|2, so

NV −1(eiθ)−2 =
(1 − |r|2)

(1 + r2 − 2r cos(θ + ϕ))
= Pr(θ,−ϕ)

(4) By (10.4.28), it suffices to do the case where A =
(

eiθ0 0
0 e−iθ0

)
with θ0 = πn

m

with m and n relatively prime. In this case, LA on ∂D permutes the intervals
{[2πj

m , 2π(j+1)
m )}m−1

j=0 , from which the result is immediate. �

Remark. We will provide a quantitative extension of (10.4.35) in Lem-
ma 10.6.10.

The next topic in this section involves determining when I(A) ∩ I(B) �= ∅ for
general A,B ∈ U(1, 1). We will need this later (see Theorems 10.4.18 and 12.6.3)
for I(A(α, z)) ∩ I(A(β, z)). A key role will be played by
Definition. A ∈ SU(1, 1) is called a reflection if A2 = −1 and Tr(A) = 0.

This is a slight misnomer since A has eigenvalues ±i and it is iA which has
eigenvalues +1 and −1 and is the “true” reflection. But since LA = LiA, we will
use this terminology.

Theorem 10.4.13. Let A,B ∈ SU(1, 1) be distinct and different from ±1.
Suppose also A �= −B. Then I(A) ∩ I(B) �= ∅ if and only if
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(a) when A and B are both nonelliptic (i.e., each is hyperbolic or parabolic), if and
only if A and B have a common eigenvector. I(A)∩I(B) is either {δeiθ0 } for a
single θ0 (if they have a single common eigenvector) or {λδθ0 +(1−λ)δθ1 | λ ∈
[0, 1]} if they have a pair of common eigenvectors (i.e., if both are hyperbolic
and they commute).

(b) when A is nonelliptic and B is elliptic, if and only if A is hyperbolic, B is a
reflection, and LB permutes the two eigenspaces of A. I(A) ∩ I(B) is then
{ 1

2δθ0 + 1
2δθ1} where θ0, θ1 are the two eigenspaces for A.

(c) when A and B are reflections, I(A) ∩ I(B) is always nonempty and has a
single element 1

2δθ0 + 1
2δθ1 where θ0, θ1 are the eigenspaces for C = AB, which

is always hyperbolic.
(d) when A and B are both elliptic and at least one is not a reflection, if and only

if A and B commute. In that case, when A and B both have eigenvalues which
are roots of unity, there is a C with A = ±Cp, B = ±Cq, and p, q relatively
prime and suitable choice of ±, and I(A) ∩ I(B) = I(C). If either A or B
has eigenvalues which are not roots of unity, I(A) ∩ I(B) is a single element
of the form Pr(θ,−ϕ) dθ

2π for suitable r, ϕ.

Proof. (a) In this case, I(A) and I(B) consist of measures with point masses
at the eigenspaces, so the result is immediate.

(b) I(A) consists of measures with only one or two pure points. By Theo-
rem 10.4.12, I(B) never has a measure with one pure point and only has a mea-
sure with two pure points if B is a reflection. Thus, if B is not a reflection,
I(A) ∩ I(B) = ∅. Since B has no eigenspaces in ∂D, LB has no fixed points. But
since B2 = −1, L2

B = 1, and thus LB has two point orbits. If the two eigenspaces
of A are in such an orbit, I(A) ∩ I(B) = { 1

2δθ0 + 1
2δθ0}. If LB(eiθ0) �= eiθ1 ,

I(A) ∩ I(B) = 0.
(c) Suppose A =

(
i 0
0 −i

)
and B =

(
ia b
b̄ −ia

)
with a real, |a|2 − |b|2 = 1 and

b �= 0. Then Tr(AB) = −2a. Since |a| > 1, C = AB is hyperbolic. Moreover,
BCB−1 = BA = C−1 (since B2 = A2 = −1) and ACA−1 = −BA−1 = BA = C−1.
Thus C is hyperbolic and A,B interchange its eigenspaces so, by (b), I(A)∩I(C) =
I(B) ∩ I(C) is a single element. Given arbitrary reflections A,B, there is a V ∈
SU(1, 1) with VAV −1 =

(
i 0
0 −i

)
and VBV −1 =

(
α β
β ᾱ

)
. Since B �= ±A, β �= 0, and

since Tr(B) = 0, Reα = 0, so VBV −1 =
(

ia b
b̄ −ia

)
with a real. The special case

thus applies.
(d) We will need the lemma below that if A and B are noncommuting elliptic

elements, the group, G(A,B), generated by A and B (i.e., the closure of all finite
strings of A, B, A−1, and B−1) contains a hyperbolic element. Given this lemma,
we note that if ν is invariant for A and B, it is also invariant for A−1, B−1, and so
for all of G(A,B). If C ∈ G(A,B) is hyperbolic and if A is not a reflection, C and
A have no common invariant measure by (b), and so I(A) ∩ I(B) = ∅. �

Lemma 10.4.14. Let A and B in U(1, 1) be noncommuting elliptic elements.
Let G(A,B) be the smallest closed subgroup of U(1, 1) containing A and B. Then
G(A,B) contains a hyperbolic element.

Proof. Without loss, we can take A,B ∈ SU(1, 1). By using the covariance
G(VAV −1, VBV −1) = V G(A,B)V −1, we can suppose A has

(
1
0

)
and

(
0
1

)
as eigen-

vectors, that is, a rotation about 0 in its action on D. We will say A has rotation
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angle 2θ if A
(
1
0

)
= eiθ

(
1
0

)
(since then LA(eiϕ) = ei(2θ+ϕ)). If 2θ is irrational or

2θ = 2π�
k with k an even integer,

(
i 0
0 −i

)
is in the closed group generated by A, so

we can suppose A is a reflection in that case. BAB−1 is also a reflection, and since
B

(
1
0

) �= (
1
0

)
(for if it were, B would commute with A), it is distinct from A. Thus

C = (BAB−1)A is hyperbolic by the calculation in the proof of Theorem 10.4.13(c).
Thus we are reduced to the case where 2θ = 2π�

k with k odd at least 3. Then
some power of A (the one with 2π�

k closest to π) has 2θ0 ∈ ( 2π
3 , 4π

3 ) so, in particular,

sin2(θ0) > cos2(θ0) (10.4.37)

Define Bn inductively by

B1 = BAB−1 Bn+1 = BnAB−1
n (10.4.38)

Thus Bn are also rotations by angle θ0, and no Bn has
(
1
0

)
as eigenvector. We will

show that for n large,
|Tr(ABn)| > 2 (10.4.39)

so ABn is hyperbolic, completing the proof. The intuition is that the “center”
(

1
zn

)
of the rotation Bn gets further and further from 0 and closer to ∂D, since the angle
of rotation 2θ0 is close to π and

(
1

zn+1

)
= cBn

(
1
0

)
rotating about zn. As |zn| → 1, its

matrix elements go to ∞, forcing a large trace for ABn. Here are the calculations
that verify this intuition.

Given z ∈ D and θ ∈ [0, 2π), let B(z, θ) be the unique element of SU(1, 1) with

B(z, θ)
(

1
z

)
= eiθ

(
1
z

)
(10.4.40)

We know, by (10.4.21),

B(z, θ) =

⎛
⎝a(z, θ) c(z, θ)

c(z, θ) a(z, θ)

⎞
⎠ (10.4.41)

and we claim that if z = reiϕ, then

a(z, θ) = cos(θ) + i
(1 + r2)
(1 − r2)

sin(θ) (10.4.42)

c(z, θ) = −e−iϕ(i sin(θ))
2r

1 − r2
(10.4.43)

One can check with this choice that (10.4.40) holds, or conversely, solve (10.4.40)
for a and c. The reader should confirm that |a|2 − |c|2 = 1.

Notice that

B(z, θ)
(

1
0

)
= a(z, θ)

(
1

c(z,θ)
a(z,θ)

)
(10.4.44)

which implies that

B(z, θ)B(0, θ0)B(z, θ)−1 = B

(
c(z, θ)
a(z, θ)

, θ0

)
and use, by (10.4.38),

Bn = B(zn, θ0)
with

zn+1 =
c(zn, θ0)
a(zn, θ0)
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Thus, if |zn| = rn,

r2
n+1 =

4rn sin2(θ0)
[(1 − r2

n)2 cos2(θ0) + (1 + r2
n)2 sin2(θ0)]

or

1 − r2
n+1 =

(1 − r2
n)2

[1 + r4
n + 2r2

n(sin2(θ0) − cos2(θ0))]
By (10.4.37), the denominator is larger than 1 and thus

1 − r2
n+1 ≤ (1 − r2

n)2

which implies that
1 − r2

n ≤ (1 − r2
1)

2n−1
(10.4.45)

so, in particular, rn → 1 as n → ∞ (and much faster than exponentially!).
To finish the argument, note that, by (10.4.41),

Tr(B(zn, θ0)B(0, θ0)) = 2Re(eiθ0a(zn, θ0))

= 2Re
[
eiθ0

[
cos(θ0) + i sin(θ0)

(
1 + r2

n

1 − r2
n

)]]

= 2 cos2(θ0) + sin2(θ0)
1 + r2

n

1 − r2
n

goes to ∞ as n → ∞, since rn → 1. Thus for n large, B(zn, θ0)B(0, θ0) is hyperbolic.
�

This lemma not only implies the hardest part of Theorem 10.4.13, but also the
following striking result:

Theorem 10.4.15. Every compact subgroup of U(1, 1) is abelian.

Proof. Let K be a compact subgroup of U(1, 1). If A is hyperbolic or par-
abolic, ‖An‖ → ∞, so An has no limit and thus A cannot lie in any compact
subgroup. Thus K can only have elliptic elements and ±1. If K is nonabelian, it
must have noncommuting elliptic elements A and B. But then G(A,B) ⊂ K has
hyperbolic elements, violating the compactness of K. Thus K must be abelian. �

Our final topic in this section is a return to the A(α, z) of (10.4.2) and asks
about when A(α1, z) and A(α2, z) have a common invariant measure. As a warmup,
we consider the analogous matrices for discrete Schrödinger operators (Jacobi ma-
trices with an ≡ 1), namely,

J(a) =
(

a −1
1 0

)
(10.4.46)

For if an ≡ 1, then pn(x) obey pn+1(x) = (x − bn+1)pn(x) − pn−1(x), so(
pn+1(x)
pn(x)

)
=

(
x − bn+1 −1

1 0

) (
pn(x)

pn−1(x)

)

In (10.4.46), a is real, so J(a) ∈ SL(2, R), which is isomorphic to SU(1, 1), so we
can talk of elliptic, parabolic, and hyperbolic elements and invariant measures (∂D

is mapped by the isomorphism to R ∪ {∞} ∼= P(1), the real projective line, which
can be realized as pairs of vectors ±(

cos(θ)
sin(θ)

)
, θ ∈ [0, π)).
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Theorem 10.4.16. Let a, b ∈ R be distinct. Then J(a) and J(b) have no
common invariant measures.

Proof. J(a)−1 =
(

0 1−1 a

)
so

J(a)J(b)−1 =
(

1 a − b
0 1

)
J(b)−1J(a) =

(
1 0

b − a 1

)

are both parabolic with invariant measures δ(1
0) and δ(0

1). Thus J(a)J(b)−1 and

J(b)−1J(a) have no common invariant measure, so the group generated by J(a)
and J(b) has no common invariant measure. �

Example 10.4.17. The nice result for the Jacobi case that there are never
invariant measures for any pair of one-step transfers does not extend to the general
OPUC case. If z = −1, Tr(A(α, z)) = 0, so A(α, z = −1) is a reflection. Thus for
any pair α, β ∈ D, A(α,−1) and A(β,−1) have an invariant measure. If z = 1 and
α = −eiψ tanh(x), then

A =
(

cosh(x) e−iψ sinh(x)
eiψ sinh(x) cosh(x)

)
is hyperbolic and

A

(
1

±eiψ

)
= e±x

(
1

±eiψ

)
It follows that A(α, z = 1) and A(β, z = 1) have a common invariant measure if and
only if arg α = arg β or arg α = π + arg β, that is, if and only if Im(ᾱβ) = 0. �

Here is the general result:

Theorem 10.4.18. Let α, β ∈ D be distinct. Then
(a) If Im(αβ̄) = 0 (i.e., β = 0 or α = λβ with λ ∈ R), then I(A(α, z)) ∩

I(A(β, z)) �= ∅ if and only if z = 1 or z = −1.
(b) If Im(αβ̄) �= 0, and if θ0 ∈ (0, π) is given by

sin
(

θ0

2

)
=

1
2
|Im(ᾱβ)|
|α − β| (10.4.47)

then I(A(α, z)) ∩ I(A(β, z)) �= ∅ if and only if z = −1, eiθ0 , or e−iθ0 .

Remarks. 1. Thus, there are either two or three exceptional points.
2. |Im(ᾱβ)| = |Im(ᾱ(β − α))| ≤ |α||β − α| so the right side of (10.4.47) is at

most 1
2 and so θ0 ∈ (0, π

3 ).

Proof. By the discussion in Example 10.4.17, I(A(α, z = −1)) ∩ I(A(β, z =
−1)) �= ∅. So we consider z �= −1.

The 12 matrix element of A(α, z)A(β, z) is −zβ̄ − ᾱ, so the 12 matrix element
of [A(α, z), A(β, z)] is (1 − z)(β̄ − ᾱ) �= 0 if α �= β and z �= 1. Since A(α, z = 1) is
always hyperbolic, A(α, z) and A(β, z) are never commuting elliptic matrices.

If z �= −1, A(α, z) is not a reflection, so if A(α, z) is elliptic, it and A(β, z)
cannot have a common invariant measure by Theorem 10.4.13 and the argument
above that A(α, z) and A(β, z) are never commuting elliptic matrices. Thus we need
only consider the possibility that A(α, z) and A(β, z) have a common eigenvector(

1
w

)
with w ∈ ∂D.
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If A
(

1
w

)
=

(
a1
a2

)
, then

(
1
w

)
is an eigenvector of A if and only if a2 = wa1. Thus(

1
w

)
is an eigenvector of A if and only if

(z − ᾱw)w = −αz + w (10.4.48)

This holds for α and β if and only if it holds for α and

(β̄ − ᾱ)w2 = (β − α)z (10.4.49)

Given α, β distinct, define

x =
β − α

β̄ − ᾱ
∈ ∂D (10.4.50)

so (10.4.49) becomes

w2 = xz (10.4.51)

Under (10.4.51), (10.4.48) is equivalent to

w(1 − z) = (α − ᾱx)z (10.4.52)

We claim this is equivalent to

w2(1 − z)2 = (α − ᾱx)2z2 (10.4.53)

For clearly (10.4.52) implies (10.4.53) and, given a solution of (10.4.51) and
(10.4.53), we can choose the sign of w so that (10.4.52) holds.

Clearly, (10.4.51) and (10.4.53) hold if and only if

(1 − z)2 = x−1(α − ᾱx)2z

= −|α − ᾱx|2z (10.4.54)

since x−1 = x̄. By a simple calculation and (10.4.47),

|α − ᾱx|2 =
|Im(ᾱβ)|2
|α − β|2 = 4 sin2

(
θ0

2

)
= 2 − 2 cos(θ0)

so (10.4.54) is

z2 − 2 cos(θ0)z + 1 = 0 (10.4.55)

where solutions are z = e±iθ0 .
Thus, if I(A(α, z))∩I(A(β, z)) �= ∅, as we have shown, z must solve (10.4.55).

Conversely, if z �= +1 solves (10.4.55), and we define w by (10.4.52), then w and
z obey (10.4.51) and (10.4.52), and so (10.4.49) for α and β, and so I(A(α, z)) ∩
I(A(β, z)) �= ∅. If z = 1 solves (10.4.55), then Im(ᾱβ) = 0, in which case we saw
in Example 10.4.17 that I(A(α, z = 1)) ∩ I(A(β, z = 1)) �= ∅. �

One can go on and ask about common elements of more than two I(A(α, z)).
Here is a typical result:

Theorem 10.4.19. Let {αj}k
j=1 be a collection of points of D. Then

∩k
j=1I(A(αj , z = −1)) is nonempty if and only if the collection of points lies on

a circle that intersects ∂D orthogonally.
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Remarks. 1. As usual, with fractional linear transformations, “circle” means
circle or line.

2. If k = 2, there is always such a circle — the one through α1, α2, and − 1
ᾱ1

.
If k = 3, the points determine a unique circle which may or may not be orthogonal
to ∂D. If k ≥ 4, the first three points determine a unique circle which may or may
not contain the other points.

Proof. As in the proof of Theorem 10.4.13(c), using the fact that fractional
linear transformations are conformal (angle preserving), we can suppose α1 = 0,
in which case the “circles” through α1 orthogonal to ∂D are straight lines and the
condition of lying on such a line is Im(ᾱiαj) = 0 for all i, j.

Let Cj ≡ A(αj , z = −1). By a direct calculation using C1Cj = (1 −
|αj |2)−1/2

(
1 ᾱj

αj 1

)
, one sees that [C1Ci, C1Cj ] = 0 if and only if Im(ᾱiαj) = 0.

If the commutator is 0, C1, Ci, and Cj all leave invariant 1
2δw0 + 1

2δw1 where w0, w1

are the common eigenspaces for C1Ci and C1Cj .
Conversely, if there is a common invariant measure, it must be 1

2δw0 + 1
2δw1

with w0, w1 the eigenspaces of C0Ci and C0Cj . If they have this pair of eigenspaces,
they must commute. �

Remarks and Historical Notes. The literature on U(1, 1) and SL(2, R) is enor-
mous in part because they arise in so many contexts. Obviously, as groups of
fractional linear transformations, they play a critical role in complex analysis. As
we will see, they are also groups of isometries of the hyperbolic plane, and so they
are important in hyperbolic geometry — a subject central to the modern theory of
three-dimensional manifolds. Finally, the group SL(2, Z) ⊂ SL(2, R) of elements of
SL(2, R) with integral coefficients is a core part of modern algebraic number the-
ory. For this reason, the basics, through Theorem 10.4.12, have been discussed and
rediscovered many times and are part of the folklore. So I will make no attempt
to trace their history except to note that the use of the group U(1, 1) to describe
conformal maps of D to itself and its connection to hyperbolic geometry were born
full blown from Poincaré’s great 1880 work which established his reputation; see
Yandell [1111].

If the disk D is given the real Riemannian metric (1 − |z|2)−2(dx2 + dy2), it is
a manifold with constant negative curvature. This is the Poincaré metric and the
Poincaré model of the hyperbolic plane. The group SU(1, 1)/{1,−1}, acting via
fractional linear transformations, is precisely the group of all orientation-preserving
isometries of D with this metric. The geometry on D induced by this metric is called
hyperbolic geometry. One often writes H2 instead of D.

It is useful to think of two other alternative geometries. R
2 with the standard

Euclidean metric has as its orientation-preserving isometry group, the group of
translations and rotations (about any axis), E(2) ∼= R

2�SO(2). This is Euclidean
geometry. The curvature here is constant and zero. The third geometry is on the
two-sphere S

2 with the usual rotation invariant metric. The group of orientation-
preserving isometries here is SO(3). This model has constant positive curvature
and is called spherical geometry.

Each isometry group is three-dimensional. The Lie algebra [554] has three
generators, R, T1, T2 where R generates rotations about some fixed point (conven-
tionally 0 in the D case) and T1, T2 infinitesimal “translations.” The Lie relations
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are

[R, T1] = T2

[R, T2] = −T1

[T1, T2] = σR

with σ = +1 for S
2, σ = 0 for R

2, and σ = −1 for H2. For SU(1, 1), an explicit
realization is

R =
1
2

(
i 0
0 −i

)
T1 =

1
2

(
0 1
1 0

)
T2 =

1
2

(
0 i

−i 0

)

so, for example, eaT1 = (1 − a2

4 )−1/2
(

1 a/2
a/2 1

)
generating the fractional linear

transformation z �→ z+a/2
1+az/2 for real a.

Lemma 10.4.14 is essentially a result in hyperbolic geometry. It is interesting
to consider the analogs of Theorem 10.4.15 in the other geometries. Like U(1, 1),
E(2) has no nonabelian compact groups. For SO(3), one should ask about compact,
proper subgroups. It is easy to see the only proper subgroup of positive dimension
are the rotations about a single axis (abelian) and the infinite dihedral group. The
finite subgroups are all known and classified: There are, in fact, finite nonabelian
subgroups associated with the Platonic solids and the dihedral groups; see [972,
p. 15] for the beautiful Klein-Weyl analysis of the set of discrete subgroups. It is
interesting to note why Lemma 10.4.14 fails to extend to the spherical geometry
case because rotation returns on back to the initial axis.

The special role of z = ±1 in Theorem 10.4.18 seems to violate the notion that
a circle has no end. One can understand this in the context of the applications of
Theorem 10.4.18 to measures with random Verblunsky coefficients chosen from α1

and α2. To get “equivalence” of z and 1, we need to rotate the circle from 1 to
z which maps the Verblunsky coefficients αj(dµ) → zj+1αj(dµ). If one considers
random coefficients where αj(dµ) is chosen from α1z

j+1 and α2z
j+1, then ±z have

special roles instead of ±1.
Theorem 10.4.16 is due to Ishii-Matsuda [545], although their proof is different.
A theorem like Theorem 10.4.18 appears in Katsnelson [616], but his result is,

unfortunately, false. In our notation, his theorem asserts that when Im(ᾱ1α2) �= 0,
I(A(α, z)) ∩ I(A(α2, z)) is always empty and if Im(ᾱ1α2) = 0, it is empty if and
only if z �= ±1. The error in his proof is that he asserts A(α1, z)A(α2, z)−1 is
Hermitian, which is true if and only if Im(ᾱ1α2) = 0. In response to our findings,
he has a correction; see [617].

10.5. Lyapunov Exponents and the Growth of Norms in U(1, 1)

Spectral analysis will depend on the large n behavior of ϕn(z) when z ∈ ∂D.
It will be useful to consider the transfer matrix

Tn(z) = 1
2

(
ϕn(z) + ψn(z) ϕn(z) − ψn(z)
ϕ∗

n(z) − ψ∗
n(z) ϕ∗

n(z) + ψ∗
n(z)

)
(10.5.1)

discussed already in Section 3.2 (see (3.2.27)), which is the matrix product

Tn(z) = A(αn−1, z) . . . A(α0, z) (10.5.2)

with A(α, z) given by (10.4.2). We sometimes use Tn(z, {αj}∞j=1) when we want to
make the αj ’s explicit.


