
CHAPTER 11

Periodic Verblunsky Coefficients

The splendid creations of complex function theory have excited the admiration of mathematicians
mainly because they have enriched our science in an almost unparalleled way with an abundance of
new ideas and opened up heretofore wholly unknown fields to research. The Cauchy integral formula,
the Riemann mapping theorem and the Weierstrass power series calculus not only laid the
groundwork for a new branch of mathematics but at the same time they furnished the first and until
now the most fruitful example of the intimate connections between analysis and algebra. But it isn’t
just the wealth of novel ideas and discoveries which the new theory furnishes; of equal importance on
the other hand are the boldness and profundity of the methods by which the greatest difficulties are
overcome and the most recondite of truths, the mysteria functiorum, are exposed to the brightest
light.

— Richard Dedekind

The study of one-dimensional periodic Schrödinger operators has been a main-
stay of mathematical analysis for almost 125 years, with major developments start-
ing with Hill’s initial work (which have time as the dimension and looked at stability
of the moon’s orbit, not quantum theory!) and the follow up of Lyapunov and Flo-
quet. In the early days of quantum theory, Bloch, Brillouin, and Wigner made
significant discoveries codified by Gel’fand. As part of the KdV revolution, groups
in the U.S. (including Flaschka, Kac, Lax, McKean, Moser, van Moerbeke) and
Russia (including Dubrovin, Its, Marchenko, Matveev, and Novikov) found, in the
period 1974–1976, a remarkable structure of abelian integrals, isospectral flows, and
hyperelliptic functions.

On the OPUC side, there was early work of Geronimus on periodic Verblun-
sky coefficients and, more recently, important series of papers by Peherstorfer and
collaborators and by Golinskii and collaborators (and related work on OPRL of
which Akhiezer’s work was especially important). But, surprisingly, the OPUC
workers did not make much contact with the extensive work on Hill’s equation and
its discrete analog. The sole exception is a paper of Geronimo-Johnson [398], which
limited itself to the almost periodic case but used the hyperelliptic function and
abelian integral theory so extensively developed earlier.

Thus, the bulk of this chapter, which concerns an extremely beautiful theory,
is new although it is very close to results in the Hill case.

Section 11.1 computes the spectrum by introducing the discriminant, a key
object in the whole theory, and Section 11.2 discusses periodic CMV matrices and
the related Floquet theory. Sections 11.3 and 11.4 introduce the inverse spectral
theory problem, which will be a central focus of much of the chapter. Sections 11.5
and 11.6 describe two so far not totally successful attempts to prove the main
results of the inverse theory without extensive machinery, while Sections 11.7 and
11.8 describe a successful attack using the full armory of the theory of meromorphic
functions on hyperelliptic Riemann surfaces, and Section 11.10 a successful attack
on one aspect of the inverse spectral theory. Section 11.11 is an introduction to the
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710 11. PERIODIC VERBLUNSKY COEFFICIENTS

spectral flows that are lying in the background. Sections 11.9 and 11.12–11.14 deal
with more specialized issues of interest.

11.1. The Discriminant

Consider a set of Verblunsky coefficients for which there exists a p > 0 so that
for j = 0, 1, 2, . . . ,

αj+p = αj (11.1.1)

For a fixed p, {αj}∞j=0 is determined by {αj}p−1
j=0 , so the set of such α’s is D

p.
If Ω is {0, . . . , p − 1}, β is counting measure on Ω, T (k) = k + j (mod p),

f(j) = αj , then (Ω, β, T , f) is the foundation of a stochastic family of Verblunsky
coefficients, and αj(ω = 0) = αj which occurs with positive probability, so the
theory of stochastic Verblunsky coefficients is relevant.

In this case, since each point in Ω has positive measure, things normally only
defined for a.e. ω are defined for all ω. In particular, T −1, and so α−1, can be
defined for all j. Essentially, {αj}∞j=0 is extended to {αj}∞j=−∞ in the unique way
that (11.1.1) holds.

The theory in this case is very rich, so we will do the following main highlights
in this section. dµ is the measure for the α’s and dν the density of states.
(i) ∂D is decomposed naturally into 2p alternating sets: G1, B1, G2, . . . , Bp with

each gap, Gj , open and each band, Bj , closed. Generically (i.e., for all α’s
in D

p except a closed set of measure zero; see Theorem 11.13.1), all Gj ’s and
Bj ’s are nonempty and the Bj always have positive Lebesgue measure. But in
nongeneric cases, some of the Gj can be empty (and then two B’s overlap in a
point). We then say the gap Gj is closed.

(ii) dµ is purely a.c. on ∪jBj with w(θ) > 0 on ∪jB
int
j and dµ has at most one

pure point in any Gj and no other support there.
(iii) The density of zeros measure, dν, is the equilibrium measure for ∪p

j=1Bj and
ν(Bj) = 1/p.

(iv) The Lyapunov exponent is the equilibrium potential for ∪p
j=1Bj .

For reasons that will be clear soon, the analysis is slightly easier if p is even, so
we will assume that is so for the initial stages of the analysis. There are a number
of ways to go from even p to odd p. First, if (11.1.1) holds for p, it holds for 2p, so
any set of Verblunsky coefficients of period p can be thought of as a set with period
2p where it turns out (at least) half the gaps are closed. Second, given (α0, α1, . . . )
of period p, we can look at Verblunsky coefficients (0, α0, 0, α1, 0, . . . ) which clearly
has period 2p. By Example 1.6.14, the original measure dµ and the new one dµ̃ are
related by dµ̃(θ) = 1

2dµ(2θ), so Φ2n(z; dµ̃) = Φn(z2; dµ), and an analysis of µ̃ yields
results for µ. A third approach is to use z1/2 instead of z as the basic variable in
the function ∆ below. This is essentially equivalent to the second approach. It is
the second approach we will exploit below.

The basic function whose analysis will yield much information about periodic
cases is
Definition. Let αj obey (11.1.1) for an even integer p and let Tn(z) be the transfer
matrix (3.2.27) (or (10.5.2)). The discriminant is the function

∆(z) = z−p/2Tr(Tp(z)) (11.1.2)

defined on C\{0}.
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Here are the basic properties of ∆:

Theorem 11.1.1. (i) ∆ is real on ∂D, analytic in C\{0}, and

∆(z) = ∆(1/z̄) (11.1.3)

(ii) The Lyapunov exponent is given by

γ(z) =
1
2

log|z| + 1
p

log
∣∣∣∣∆2 +

√
∆2

4 − 1
∣∣∣∣ (11.1.4)

where the branch of the square root is taken that maximizes the right side of
(11.1.4).

(iii) For any ω ∈ C, ∆(z) = ω has exactly p roots counting multiplicities and the
product of these roots is 1.

(iv) If ω ∈ [−2, 2], all solutions of ∆(z) = ω lie in ∂D.
(v) If ω ∈ (−2, 2), all roots of ∆(z) = ω are simple.
(vi) Starting with some convenient solution of ∆(z) = 2, one can label these solu-

tions (counting multiple roots multiple times) z+
1 , z+

2 , . . . , z+
p , and the solutions

of ∆(z) = −2, z−1 , . . . , z−p so that if a
·
< b

·
< c means a, b, c lie in ∂D with b

between a and c on the arc going counterclockwise from a to c, then

z+
1

·
< z−1

·
≤ z−2

·
< z+

2

·
≤ z+

3

·
< z−3

·
≤ · · · (11.1.5)

with the arc from z+
1 to z+

2 to . . . to z+
p to z+

1 circling the origin once; see
Figure 11.1.
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Figure 11.1. Ordering of solutions of |∆(eiθ)| = 2

(vii) ∆(z) ∈ (−2, 2) if and only if for some k, z+
2k+1

·
< z

·
< z−2k+1 or z−2k

·
< z

·
< z+

2k,
and on each band,

Bk = {z | zσk

k

·
≤ z

·
≤ z−σk

k } (11.1.6)
with σk = (−1)k+1, ∆(z) is strictly monotone.

Remarks. 1. If we cut the circle at z+
1 , the graph of ∆ along the circle is given

in Figure 11.2.
2. Thus ∆(eiθ) is a real-valued function on ∂D, obeying ∂∆

∂θ = 0 ⇒ |∆(eiθ)| ≥ 2.
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Figure 11.2. Graph of ∆(eiθ)

Proof. (i) Since det(Tp(z)) = zp, if

Q(z) = z−p/2Tp(z) (11.1.7)

then
det(Q(z)) = 1 (11.1.8)

It follows that Q(eiθ) is in SU(1, 1), so its trace is real by Corollary 10.4.2. Since p
is even, Q(z) is clearly analytic. (11.1.3) is the analytic continuation of reality of
Tr(Q(eiθ)).

(ii) Let e1(z) and e2(z) be the two eigenvalues of Tp. Then, by the spectral
radius formula,

lim
n→∞ ‖Tnp‖1/np = lim

n→∞ ‖Tn
p ‖1/np = max(|e1|, |e2|)1/p (11.1.9)

Moreover, since supk(‖A(αk, z)‖, ‖A(αk, z)−1‖) are bounded

γ(z) = lim
n→∞ log ‖Tnp‖1/np (11.1.10)

If ẽ1, ẽ2 are the eigenvalues of Q, by (11.1.7),

ej = zp/2ẽj (11.1.11)

so, by (11.1.9) and (11.1.10),

γ(z) =
1
2

log|z| + 1
p

log max(|ẽ1|, |ẽ2|) (11.1.12)

Since ẽj are the roots of

x2 − ∆(z)x + 1 = 0 (11.1.13)

they are
∆
2

±
√

∆2

4
− 1

so (11.1.12) is (11.1.4).
(iii) ∆(z) = ω if and only if Tr(Tp(z)) − zp/2ω = 0 which are roots of a

polynomial equation of degree p. The degree is exactly p since ρp
∞z−pTp(z) →∏p

j=1

(
1 0−αj 0

)
=

(
1 0−αp 0

)
with ρ∞ = (

∏p−1
j=0(1 − |αj |2)1/2)1/p, so ρp

∞Tr(Tp(z)) is
monic, that is,

ρp
∞z−pTr(Tp(z)) → 1 (11.1.14)
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as |z| → ∞. Thus there are p roots counting multiplicity.
By (11.1.3), the zp/2 and z−p/2 coefficients of ∆(z) are complex conjugates, and

so equal, since we have just seen that the zp/2 coefficient is real. Thus, ρp
∞[Tr[Tp(z)−

zp/2ω]] is a monic polynomial with value 1 at z = 0. Thus the product of its roots
is 1.

(iv) By (11.1.4), if ∆(z) ∈ [−2, 2], then
∣∣∆

2 +
√

∆2

4 − 1
∣∣ = 1 so γ(z) = 1

2 log|z|.
If z ∈ D, by Theorem 10.5.11, γ(z) ≥ 0 > 1

2 log|z|, so we see ∆(z) /∈ [−2, 2]. By (i),
if z ∈ C\D, ∆(z) = ∆(1/z̄) /∈ [−2, 2] = [−2, 2].

(v) In the neighborhood of an 
-th order zero, z0, of an analytic function, there
are 2
 smooth curves with end z0 so that f(z) is real and |f(z)| small on the curves
and the asymptotic phases are ei(θ0+jπ/�), j = 0, 1, 2, . . . , 2
−1. Thus, if ∆(z)−ω0

has a zero of order 
 > 1 at z0 ∈ ∂D and ω0 ∈ (−2, 2), there are points near z0 and
not on ∂D with ∆(z) ∈ (−2, 2). Since this is impossible, all zeros are simple.

For later purposes, we note that the same argument shows ∆(z) = ±2 can only
have single or double zeros, and if ∆(eiθ0) = ±2, d

dθ∆(eiθ)
∣∣
θ=θ0

= 0, then for all
(θ − θ0) small and real, ∆(eiθ) ∈ ±(2 − ε, 2).

(vi) Pick any zero, ω, of ∆(z) = 2. If ∆(eiθω) ≤ 2 for 0 < θ < δ, pick
z+
1 = ω. Otherwise, by the last statement in the proof of (v), ∆(eiθω) > 2 for

0 < θ < δ, in which case the next zero, call it z+
1 , has a simple zero at 2 and so

obeys ∆(eiθz+
1 ) < 2 for 0 < θ < δ. By (v), ∆(eiθz+

1 ) is strictly monotone decreasing
in θ until we reach a point z−1 where ∆(z) = −2. If z−1 is a double zero, z−2 = z−1 .
Otherwise, ∆(z) < −2 just past z−1 , but it must turn around, and then the next
value in [−2, 2] is −2. In either event, ∆(z−2 eiθ) > −2 for 0 < θ < δ. Repeating
this argument shows the +2,−2,−2,+2,+2,−2,−2, . . . alternation.

(vii) This is just the construction of (vi). �
A major aim towards the later part of this chapter is to prove that a Laurent

polynomial, ∆(z), of degree p even is the discriminant of a set of period p Verblunsky
coefficients if and only if
(1) ∆(eiθ) is real on ∂D.
(2) All zeros of ∆(z) lie on ∂D and their product is 1.
(3)

∂

∂θ
∆(eiθ) = 0 ⇒ |∆(eiθ)| ≥ 2 (11.1.15)

Notice we have proven above that these conditions are necessary for ∆ to be a
discriminant. The other direction is proven in Section 11.7 (as Theorem 11.4.4).

Theorem 11.1.2. Let {αj}∞j=0 be a sequence of Verblunsky coefficients of some
period p and let dµ be the associated measure. Then {eiθ | |Tr(Tp(eiθ))| ≤ 2} is a
closed set which is naturally the union of p closed intervals (which can only overlap
in single points), B1, . . . , Bp. dµs[∪Bj ] = ∅ and ∪Bj is the essential support of
the a.c. spectrum. In each disjoint open interval on ∂D\ ∪n

j=1 Bj, µ has either no
support or a single pure point.

Remark. We will show later (see Theorem 11.3.2) that if dµ = w(θ) dθ
2π + dµs,

then w is continuous and w(θ) > 0 on Bint.

Proof. Suppose first that p is even. The condition that
(
1
1

)
be an eigenfunction

of Tp(z) is that 〈
(

1
−1

)
, Tp(z)

(
1
1

)
〉 = 0, which is a polynomial equation, and so it has
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at most p solutions. For each z ∈ ∂D\ ∪p
j=1 Bj ≡ G, |Tr(Tp(z)| > 2, so Tp(z) is

hyperbolic (see Theorem 10.4.3). Thus there is a subordinate solution, and if ϕn(z)
is that subordinate solution,

(
1
1

)
must be an eigenvector of Tp(z). Thus G has only

singular spectrum and the singular spectrum on G is a finite set. It follows that
the essential spectrum µ is contained in ∪p

j=1Bj .
We claim that for any compact K ⊂ Bint

j ,

sup
z∈K

sup
n

‖Tn(z)‖ < ∞ (11.1.16)

for on K, with ψ defined by 2 cos(ψ(z)) = Tr(z−p/2Tp(z)),

Tp(z) = [eiψ(z)P+(z) + e−iψ(z)(1 − P+(z))]zp/2

where, by eigenvalue perturbation theory [615], P+(z) is analytic, and so continu-
ous. Since

‖Tmp(z)‖ ≤ ‖P+(z)‖ + ‖(1 − P+(z)‖
we see

sup
z∈K

sup
m

‖Tmp(z)‖ < ∞

Since
sup
z∈K

sup
j=0,1,2,...,p−1

‖Tj(z)‖ < ∞

(11.1.16) holds by ‖Tmp+j‖ ≤ ‖Tj‖ ‖Tmp‖, since Tmp+j = TjTmp.
There are now many different ways to see that there is purely a.c. spectrum on

∪p
j=1B

int
j :

(1) By the Jitomirskaya-Last and Gilbert-Pearson ideas (see Corollary 10.8.4),
µs(Bint

j ) = 0 and there is a.c. spectrum on Bint
j .

(2) By Carmona’s criterion (Theorem 10.7.5), the spectrum is purely a.c. on Bint
j .

(3) By Kotani’s theory (see Theorems 10.11.1 and 10.11.2), since (11.1.16) implies
γ(z) = 0 on ∪Bint

j and Bint
j is open, the spectrum is purely a.c.

(4) Most directly, by computing F (z), the Carathéodory function, and looking at
the boundary values. We will do this in Section 11.3.
At the end points of B, Tp(z) is parabolic, so limn→∞ Tp(z)n

(
1
1

)
�= 0, so there

are not eigenvalues. Thus
σess =

⋃
j

Bj

and µs(∪jBj) = 0.
By Theorem 10.16.3, there is at most one eigenvalue in each gap.
If p is odd, consider (0, α0, 0, α1, 0, . . . ) and read the results off this period 2p

case. �

Since we have γ in (11.1.4), we can compute the density of zeros, dν.

Theorem 11.1.3. Let {αj}∞j=0 be a sequence of Verblunsky coefficients of some
period p and let dµ be the associated measure. Let p be even. Then
(1) dν is the equilibrium measure of ∪jBj, the essential spectrum for dµ, and the

equilibrium potential is −[γ(z) + log CB ]. The capacity is

CB =
[ p−1∏

j=0

(1 − |αj |2)
]1/p

(11.1.17)
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(2) The equilibrium measure, dν, is given in terms of the discriminant, ∆, by

dν(θ) = V (θ)
dθ

2π
(11.1.18)

where

V (θ) =
1
p

|∆′(eiθ)|√
4 − ∆2(eiθ)

(11.1.19)

with

∆′(eiθ) =
∂

∂θ
∆(eiθ) (11.1.20)

(3)

ν(Bj) ≡
1
p

(11.1.21)

for each j.

Remarks. 1. The results also hold for odd p. ∆ is not well-defined, but it is
defined up to a ± sign (associated to z1/2). Since (11.1.19) involves ∆2 and |∆′|,
the sign drops out. The proof follows using sieving.

2. Equilibrium measures, capacities, etc. are discussed right after Theo-
rem 8.1.12.

3. We will have a very different proof of (11.1.19) and (11.1.21) below (see
Theorem 11.2.4 and (11.2.24)); in particular, the reason for (11.1.21), which here
just follows from a calculation, will be transparent.

4. At an open gap edge, ∆2 − 4 has a simple zero, so ∆′ �= 0 and thus, V (θ)
has a square root divergence. At a closed gap, ∆′ = 0 and 4 − ∆2 has a double
zero, so V (θ) is regular.

Proof. (1) By the Thouless formula (10.5.21) (see Theorem 10.5.26),

γ(z) = − log ρ∞ +
∫

log|z − eiθ| dν(eiθ) (11.1.22)

where
ρ∞ = RHS of (11.1.17) (11.1.23)

By (11.1.4) and ∪Bj = {eiθ | |∆(eiθ)| ≤ 2}, γ(z) = 0 on ∪jBj . By the arguments
in Section 8.1 (see the proof of Proposition 8.1.5), dν is the equilibrium measure,
E(dν) = − log ρ∞ (so e−E(dν) = ρ∞, which proves (11.1.17)), and −[γ(z) + log ρ∞]
is the equilibrium potential.

(2) By (10.11.21) and (1.3.31), we have

V (θ) = lim
r↑1

Re Fν(reiθ) = 1 − lim
r↑1

Re
(

2z
∂Γ
∂z

)∣∣∣∣
z=reiθ

(11.1.24)

where Γ is any function analytic in D with

ReΓ(z) = γ(z) (11.1.25)

This determines Γ up to an imaginary constant which drops out of (11.1.24).
Define

H(z) =
zp/2∆(z)

2
+

√
zp∆(z)2

4
− zp (11.1.26)
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where we take the branch of √ which is positive at z = 0 where zp/2∆(z) ∼ ρ−p
∞ .

H is obviously nonvanishing near z = 0 and H(z) ∼ ρ−p
∞ . For z0 �= 0, we cannot

have H(z0) = 0 since then(
z

p/2
0 ∆(z0)

2

)2

=

(
−

√
zp
0∆(z0)2

4
− zp

0

)2

and LHS − RHS = zp
0 �= 0. Thus

Γ(z) =
1
p

log H(z)

=
1
2

log(z) +
1
p

log

[
∆(z)

2
+

√
∆(z)2

4
− 1

]
(11.1.27)

is analytic in D, and by (11.1.4), (11.1.24) holds.
Noting Re(z ∂

∂z log(z)) = 1 and that

Re
(

z
∂f

∂z

)
z=reiθ

= r
∂

∂r
Re f(reiθ)

=
∂

∂θ
Im f(reiθ)

and taking limits as r ↑ 1, we see that (11.1.19) is a direct consequence of (11.1.24)
and (11.1.26).

(3) Noting that

V (θ) =
1
p

∣∣∣∣ d

dθ
arccos

(
1
2

∆(eiθ

)∣∣∣∣ (11.1.28)

and that, since 1
2∆ runs from −1 to 1 monotonically over Bj , arccos( 1

2∆) runs from
0 to 2π, we conclude ∫

Bj

V (θ)
dθ

2π
=

1
p

1
2π

2π =
1
p

�

Remark. Since Q(z) ≡ ∆(z)
2 +

√
∆(z)2

4 − 1 has an analytic continuation to
C\{bands}, it is tempting to use (11.1.27) to extend Γ to that set. But on a band,
Q(z) = eiψ(z) where cos(ψ(z)) = ∆(z)

2 , and under analytic continuity, ψ(z) has
opposite signs on the two sides of a band, so arg(Q(z)) increases by 2π in going
around one band. So log(Q(z)) cannot be extended to a single-valued analytic
function on ∂C\{bands}.

Example 11.1.4 (= Example 1.6.12 Revisited). Pick α ∈ D and let αj ≡ α.
Ignoring for now the fact that p = 1 is not even, if z = eiθ, then ρ = (1 − |α|2)1/2,

∆(eiθ) = 2ρ−1 cos( 1
2 θ) (11.1.29)

so |∆| ≤ 2 if and only if cos(1
2θ) ≤ ρ or sin(1

2θ) ≥ |α|, that is, θ ≥ θ|α| = 2 sin(|α|).
By (11.1.19),

V (θ) =
|sin(θ/2)|

2ρ
√

1 − ρ−1 cos2( 1
2θ)

=
sin(θ/2)

2
√

sin2(θ/2) − sin2(θ|α|/2)
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which is (9.7.13).
To handle the fact that p is not even, we can sieve the problem and get a p = 2

problem with ∆(eiθ) = 2ρ−1 cos(θ) and then later map back to the p = 1 problem.
Or we can use the fact that ∆ is determined up to ±1 and that the sign drops out
of (11.1.29).

We can also see when there is a pure point in (−θ|α|, θ|α|). One needs
(
1
1

)
to

be an eigenvector of T1(z) with eigenvalue less than 1. The condition that
(
1
1

)
be

an eigenvector is that z − ᾱ = −zα + 1, that is, that

z =
1 + ᾱ

1 + α
≡ zα (11.1.30)

(i.e., (1.6.86)). The eigenvalue of T1 is then ρ(1 + α)−1, so the condition for a
pure point is that ρ2 < |1 + α|2, that is, 2|α|2 + 2Re(α) > 0 (in agreement with
Theorem 1.6.13).

The eigenvalues of the transfer matrix also give one ratio asymptotics; this
repeats the calculation that led to Theorem 9.6.9.

One can ask the structure of the set of periodic α’s with ∆ given by (11.1.29).
It is those α’s with |α| =

√
1 − ρ2 and so, a circle. This circle can be understood as

mapping to the gap by α → zα. The map is one-one at the endpoints and two-one
on the interior of the gap. �

Example 11.1.5. Let

α2j = α α2j+1 = α′ (11.1.31)

be of period 2. Computing the trace of
1

ρρ′

(
z −ᾱ′

−α′z 1

)(
z −ᾱ

−αz 1

)
(11.1.32)

we see
∆(eiθ) = 2(ρρ′)−1[cos(θ) + 2Re(ᾱα′)] (11.1.33)

Let θ± solve
cos(θ±) = −Re(ᾱα′) ± ρρ′

with θ± ∈ [0, π), so 0 ≤ θ+ < θ− ≤ π. The Schwarz inequality implies |Re(ᾱα′)| +
ρρ′ ≤ 1 with equality only if α = ±α′.

|∆(eiθ)| ≤ 2 if and only if ±θ ∈ [θ+, θ−] yields precisely the two bands in the
essential support of dµ.

A straightforward calculation yields

V (θ) =
|sin θ|

2((cos(θ+) − cos(θ))(cos(θ) − cos(θ−)))1/2
(11.1.34)

To determine the structure of the set of pairs (α0, α1) to lead to a given ∆
of the form (11.1.33), note the ∆ fixes A = ρ0ρ1 and B = Re(ᾱ0α1). Suppose
first that |B| + A = 1. As noted above, this implies α0 = ±α1, so B determines
|α0| = |α1|. If B = 0, A = 1 and we have a single point α0 = α1 = 0. If
B > 0, then α0 = α1 =

√
B eiθ and we have a circle of values. If B < 0, then

α0 = −α1 =
√

|B| eiθ and we again get a circle.
Finally, if |B| + A < 1,

|α0α1| + ρ0ρ1 ≤ 1 (11.1.35)
implies

|Im(α0α1)| ≤ [(1 − A)2 − B2]1/2 ≡ C (11.1.36)
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If |Im(α0α1)| = C, then |α0| = |α1| (by equality in the Schwarz inequality (11.1.35))
and |α0| is uniquely determined as

√
1 − A. If |Im(α0α1)| < C, |α0α1|2 is deter-

mined by |Re(ᾱ0α1)|2 + |Im(ᾱ0α1)|2 and |α0|2 + |α1|2 = 1
2 (1+ |α0α1|2 −A2), so we

get a quadratic equation for |α0| with two solutions corresponding to interchanging
|α0| and |α1|. Thus, {(|α0|, |α1|)} consistent with A and B is a circle (two copies
of [−C,C] glued at the ends). |α0|, |α1|, and Re(ᾱ0α1) determine ᾱ0α1, and then
there is one circular degree of freedom from the phase of α0 if |α0| �= 0 and from
the phase of α1 if |α0| = 0.

Thus, if there are no gaps (|α0| = |α1| = 0), we get one solution; one gap
(α0 = ±α1), we get a circle; two gaps, we get a two-dimensional torus. This is a
theme we return to in Section 11.4. �

Remarks and Historical Notes. As we have noted earlier (see Example 11.1.4,
Sections 9.5, 9.6, 9.7, and Corollary 9.10.7), there has been extensive study of the
Geronimus polynomials, αj ≡ a, and its perturbations, but much less about the
more general periodic case.

In [404], Geronimus used continued fractions to compute the measure associ-
ated to a general family of periodic Verblunsky coefficients, in particular, obtaining
the structure of purely a.c. spectrum on a collection of closed arcs, in general,
equal in number to the minimal period. We will discuss this further in the Notes
to Section 11.3. This calculation from another point of view, the one we use in
Section 11.3, can be found in Peherstorfer-Steinbauer [856].

Calculations of the density of zeros as an equilibrium measure of zeros via
potential theory can be found for a finite family of arcs in [930] and [997]. The
two basic approaches in this section and the next, namely, ∆(z) as the trace of a
transfer matrix and the use of the operator Eq(β), are new within OPUC, but, as
we will explain shortly, are analogs of a well-known theory for ODEs, and so quite
natural. Indeed, it is surprising that no previous workers on OPUC exploited this
well-known theory.

The second-order ODE, Hu = −u′′ + V u with V periodic, is called Hill’s
equation, after fundamental work of Hill [510]. He came to the equation by asking
about stability of closed (hence periodic) orbits under small perturbations. The
key notion of intervals of stability and instability (what we would call bands and
gaps) is due to Lyapunov [724].

The use of discriminants in Hill’s equation and their properties goes back to
Lyapunov [724], Hamel [490], Haupt [494], and Kramers [650]. For monograph
discussions of Hill’s equation, see the delightful short book of Magnus and Winkler
[731] and Eastham [326] and the briefer discussion in Reed-Simon [899].

The quantity ∆2 − 4 enters often. From one point of view, it is just the dis-
criminant of the quadratic equation (11.1.13) (still ∆, not 4 − ∆2, is called the
discriminant in analog with the theory of Hill’s equation!). Note that if A =

(
a b
c d

)
is a 2 × 2 matrix with eigenvalues λ1 and λ2, then

(λ1 − λ2)2 = (λ1 + λ2)2 − 4λ1λ2

= Tr(A)2 − 4 det(A) (11.1.37)

= (a − d)2 + 4bc

and for z−p/2Tp(z), (11.1.37) is ∆2 − 4.
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By Theorem 11.1.1(iii), if {eiθ�}2p
�=0 are the roots of the polynomial zp(∆2 −4),

then
∏2p

�=0 eiθ� = 1, and so

∆2(eiθ) − 4 = ρ−2p
∞ e−ipθ

2p∏
�=0

(eiθ − eiθ�)

= ρ−2p
∞ 22p(−1)p

2p∏
�=0

sin
(

θ − θ�

2

)

The function

22p

2p∏
�=0

sin
(

θ − θ�

2

)
= R(eiθ) (11.1.38)

is the central function of Peherstorfer-Steinbauer [856]. They discuss a polynomial,
T , defined by T 2 − RU2 = L2zp which, for a special case, is a multiple of zp/2∆.

11.2. Floquet Theory

We next present a totally different way of understanding the relation of ∆ to
dν, that is, of proving (11.1.19). It is a version of Floquet theory for OPUC that is
quite close to the OPRL case, although various factors of zp/2 will float in and out
of view. We will let q be an integer so αj is q periodic. In applications, q will be a
large multiple of p so even if p is odd, we will take q to be an even multiple. We
suppose q ≥ 6.

Let the extended CMV matrix, E , act on 
∞. Since rows are finite and since
the sum of the absolute values of any row is bounded by 4, E is bounded on 
∞. If
(Mu)m = um+q, then

ME = EM (11.2.1)

since q is even and α is periodic (q even is needed because of the mod 2 structure
of C and E). In particular, if β ∈ ∂D and

Xβ = {u ∈ 
∞ | Mu = βu} (11.2.2)

then E takes Xβ to itself. Clearly, if u ∈ Xβ , u is determined by {uj}q−1
j=0 and these

coordinates are arbitrary, so
dim(Xβ) = q (11.2.3)

We define
Eq(β) = E � Xβ (11.2.4)

For j = 0, . . . , p − 1, let δj ∈ Xβ be the vector with

(δj)m =

{
β� m = 
q + j

0 m �≡ j mod q
(11.2.5)

Then {δj}p−1
j=0 are a basis for Xβ . In this basis, Eq(β) is a matrix with four nonzero

elements on each row, obtained by taking the infinite E , cutting out the [0, q− 1]×
[0, q − 1] block, and adjusting the first two and last two rows, as follows: The top
rows in E have one element each cut off in passing to Eq(β), shift that element right
p places and multiply by β−1. Similarly, in the bottom row, shift left by p places
and multiply by β; see Figure 11.3.


